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SUMMARY

The stability of a plane two-dimensional vortex sheet separating thermal-
ly radiating gases is investigated by the method of normal modes. The study
was prompted by concern for the contaimment of the uranium gas core in a coax-
ial Jet nuclear rocket. Allowing for transverse variation in the base flow
temperature and density, the equations of continuity, momentum, energy, state,
nuclear fission internal heat generation, and radiative transfer for an ideal
grey gas are formulated for small disturbances and solved numerically. Effects
of heat generation, wave reflections at a plane of symmetry, radiative non-
equilibrium in the waves, and velocity and density differences across the
interface are studied.

The effect of base flow thermal radiation across the vortex sheet is also
analyzed, by considering & uniformly heat generative, symmetric inner gas with
non-uniform base temperature and a faster moving, semi-infinite outer gas. It
is shown that the base flow temperature variation has a stabilizing influence.
An aspproximate application of this analysis is made to a nuclear rocket with
the conclusion that the disturbed vortex sheet is less unstable because of the
radiative transfer.

INTRODUCTION

Background

This investigation was prompted by concern for the containment of the
uranium gas core in a coaxial Jet nuclear rocket. In particular, we wish to
know the influence of radiative heat transfer upon the integrity of the inter-
face between the inner heat generative gas and the outer, faster moving, cool-
ant gas. A schematic of the rocket chamber is sketched in Figure 1 (see, for
example, Putre [30]).

For tractability of our problem, certain simplifying assumptions will be
required. At the outset we shall assume that the interface separating the two
dissimilar gases degenerates to a vortex sheet of infinitesimal thickness,
across which there will be no molecular diffusion. Further, we shall choose
to analyze only two-dimensional parallel flow in an x-y plane. The results and
conclusions from this analysis should carry over to the axisymmetric flow in
view of the qualitative agreement existing between results for the two geome-
tries as exhibited by Gill [T] and Lessen, Fox and Zien [1T7] in their studies
of Jet and wake instabilities in isentropic gases. Other simplifying assump-
tions will be mentioned as needed in the development of succeeding sections.

Literature Survey

Hydrodynamic stability. -~ Several authors have studied the vortex sheet
stability problem, nearly always in the presence of complete local thermody-
namic equilibrium flow. Helmholtz, Rayleigh and Kelvin (see Lamb [14]}) inves-
tigated the plane vortex sheet separating incompressible inviscid flows of




semi-infinite extent and found the sheet to be unstable to small disturbances.
Landau [15], Hatanaka [10], Pai [25] and Miles [23] extended this to compress-
ible flows with the conclusion that the sheet would be neutrally stable when

|U2-Ul| > (ai/3+a§/3)3/2 where (U,a) refer to the speed and isentropic speed

of sound in the base flow of the two gases. The specific heat ratios of the

two gases were assumed equal. It should be noted that Miles demonstrated that
Landau, Hatanaka and Pai generated spurious eigenvalues in addition to the
correct ones in their approach to the problem., Miles, in using an initial value
problem approach where disturbances were restricted to those initiated at the
vortex sheet and propegated outward, was able to show the appropriate number

and stability character of the eigenvalues generated from the principal branch
of his characteristic equation. He demonstrated that there exist two principal
modes for subsonic disturbances, which appear when |U2-Ul] < (al+a2) and three

principal modes for supersonic disturbances, which appear when

. 2/3,.2/3,3/2
]U2—Ul| > (al+a2). Only one mode is unstable for |U2-Ull < (al +a, )

while all three modes are neutrally stable for le-Ull > (ai/3+a§/3)3/2.

All seven of the above investigators considered the vortex sheet to be
separating semi-infinite gases. Other authors have restricted the dimension
of one of the gases. For instance, Gill and Lessen et al considered "top-hat"
type velocity profiles for compressible Jjet and wake type flows in both two-
dimensional planar and axisymmetric cylindrical geometries. Gill's approach
was purely analytical, thus requiring him to restrict his attention to certain
asymptotic limits to make the problem tractable. Specifically, he considered
disturbances along the vortex sheet with a small length scale (short waves)
compared to the dimension of the inner gas. Obviously, this identifies with
the above case of a vortex sheet separating semi-infinite gases except when

|U2—Ul| > (ai/3+ag/3)3/2. In the latter region Gill claims that there is an

"enhanced instability" by virtue of the ability of waves to reflect back and
forth at one of the resonant angles (see Fejer and Miles [6])with a growth
U2—Ul
rate of the order log (aM), where M = | = 1
less wave number, and oM is taken as large. He notes that, for these short
waves, the wave speed is close to M/2 which complies with Miles' explicit result
provided for the vortex sheet in an infinite domain. We must be careful when
considering Gill's results since the short wave limit would be highly affected
in the presence of viscosity, an ingredient neglected in his investigation.

|, a =a, = 855 O is the dimension-

Lessen et al restricted their attention to jets (or wakes) moving super-
sonically relative to the surrounding gas and looked for unstable solutions.
Their numerical results consisted of plots of the real (wave speed) and imagi-
nary (amplification factor) parts of the eigenvalues versus a dimensionless
wave number (disturbance wave number times inner gas half-width) for various
supersonic inner jet Mach numbers. Their paper provides evidence that the
vortex sheet is unstable to small disturbances at all supersonic speeds in the
presence of a plane of symmetry for both symmetrical and anti-symmetrical
disturbances.

For incompressible flow Betchov and Criminale [2] showed where placement



of a wall near a shear layer has a stabilizing influence but does not afford
stability. They note the fact that for short waves (compared to shear layer
to wall distance) the eigenfunctions diminish to a small amplitude into the
free stream on either side of the shear layer while for long waves there
results a buildup of pressure fluctuations toward the wall.

In each of the above cases the investigators took the base flow properties
of each gas to be uniform with discontinuities occurring only at the interface
separating them. This assumption results in a constant coefficient differential
acoustic disturbance equation, allowing simple exponential solutions. Early
investigators pursued parallel flow stability problems wherein the base flow
properties varied across streamlines in some continuous manner. Although the
resulting governing equations are linear on the basis of the small disturbance
approach, they are of variable coefficient form and only tractable in some
relstively simple cases. Tollmein [34] considered the incompressible boundary
layer while Lees and Lin [16] did the same for the compressible boundary layer.
Pai [26] extended the method of Lees and Lin to a jet flow of a single gas.

His supersonic disturbance stability criterion in this case lends support to
his vortex sheet stability criterion. Each of the above three studies included
viscosity in a large Reynolds number expansion but did not account for any
other non-equilibrium mechanism.

In recent years interest has been shown in the stability of a disturbed
vortex sheet separating two fluids subject to some form of molecular non-
equilibrium. For instance, Wang and Maslen [39] investigated the stability of
a vortex sheet separating two perfectly conducting semi-infinite compressible
fluids in the presence of uniform, parallel magnetic fields. They show that,
when the ratio between Alfvén speed and sound speed is unity in both fluids,
the sheet is completely stable. Wang [38] also investigated the stability of
the vortex sheet separating two semi-infinite compressible chemically relexing
gases and found that a measure of non-equilibrium in the perturbation problem
affords instability at all speeds. However, should the relaxation times be
particularly fast (equilibrium) or slow (frozen) the sheet is neutrally stable

for |U2—Ul > (Ei/3+52/3)3/2 where & is either the equilibrium or frozen speed

of sound. We should note that, in each of these two investigations, the non-
equilibrium was assumed to occur in the small disturbance only while the base
flows were in complete equilibrium.

Thermal radiation. -~ In the last decade, with the advent of higher speed
projectiles and re-entry vehicles operating under high temperatures, a new
interest has been generated in the non-equilibrium phenomenon of thermal
radiation in gaseous flows. Although Couette and Rayleigh type flows have
been solved, the mainstream of interest has seemingly been in wave structure
problems. In particular, investigators such as Zel'dovich [L42], Raizer [32],
Heaslet and Baldwin [11] and Pearson [28] have considered the steady flow
deterministic problem of the hot compressed gas downstream of a shock to be
radiating heat back upstream tending to smear the discontinuity. The latter
two papers were the culmination of numerical work wherein the non-linear
effects of large heat transfer across strong shocks could be accounted for,
that is, there was no necessity to assume uniform conditions upstream and
downstream. The latter conditions were assumed, however, for relatively weak
shocks and consequent small radiation in the analytical linearized treatment
shown in Vincenti and XKruger [37].




Another brand of deterministic wave-type problem which has received
considerable attention is that of tne propagation of a small disturbance into
a uniform hot gas. For instance, Baldwin [1], Lick [18] and Moore [24] each
attacked the initial value problem of a piston suddenly set in motion with
an infinitesimal speed, forcing a small disturbance to be propagated outward
into a semi-infinite gas. Although each author assumed uniform properties in
the undisturbed gas, affording exponential solutions, they still found it
necessary to make some rather stringent assumptions or to attack the problem
numerically. They did, however, exhibit the fact that the acoustic disturbance
decays and disperses as it propagates into the semi-infinite medium. The
dispersion is due to the fact that radiation can travel at the speed of light,
thus spreading the disturbance out behind and ahead of the wave center. The
decay of the disturbance exhibits the relaxation character of the radistive
non-equilibrium phenomenon. These authors also discussed the appearance in
their problem of the transparent and opaque limits, near and far from the
piston respectively, pointing out that the acoustic wave propagates at the
isentropic speed of sound in these limits and at the isothermal speed of sound
in the transition region between these limits. For a fairly opaque gas, then,
the transparent region close to the piston may be considered as a boundary
layer, a point which will have importance to a part of the present study.

Vincenti and Baldwin [36] made observations of similar nature to those
of the above authors in their study of the response of the semi~infinite hot
gas to small sinusoidal oscillations in both position and temperature of the
piston. In this case, however, the frequency of the propagating disturbance
is established by that of the oscillating piston. However, depending upon the
impedance of the radiating gas, the disturbance undergoes decay and phase shift
as it propagates deeper intc the semi-infinite domasin. An important accom-
plishment of these authors is their exhibition of two types of waves making up
the disturbance, a modified classical wave and a radiation-induced wave, the
latter being a peculiarity of the higher order of the governing equations. The
intensity of each of these waves depends upon the mechanical and thermal
boundary conditions in the problem, although the radiation-induced wave will
vanish in the limits of a completely opaque, transparent or cold gas. In such
limits the classical wave propagates at the isentropic speed of sound and
becomes purely a function of mechanical boundary conditions. In the very hot
limit, both waves may exist to an intensity which depends upon the nature of
the boundary conditions, the modified classical wave propagating at the iso-
thermal speed of sound and the radiation-induced wave propagating at speeds
ranging from zero to infinity depending upon the opacity of the gas and the
induced frequency of the disturbance.

Long and Vincenti [21] investigated, by numerical methods, the pressure
response in a finite, uniformly hot gas situated between fixed walls with one
wall having a sinusoidally oscillating temperature of small amplitude. Their
results exhibit the resonance character of their finite chamber in affording
a peaked response to the standing modified classical wave. However, because
of the ability of radiation to travel at all speeds, the off-resonance response
to the modified classical wave is not zero but rather smoothly varying about
some lower amplitude while the response due solely to the radiation-induced
wave is quite uniform for the hot gas.



In nearly all of the above meniioned deterministic problems involving
thermal radiation, and particularly so in the non-numerical analyses, it
was found necessary to apply restrictions such as

(a) grey gas,

(b) differential approximation to the kernel of the radiation
integral in a one-dimensional problem,

(¢) opaque or transparent limits on absorptivity,
(d) small perturbations to a uniform base "flow".

Thus, it should not be surprising that some such simplifying assumptions will
be necessary when combining the difficult problems of thermal radiation and
stability. Furthermore, as is the practice of most authors, we shall assume
that, while radiation is being considered, other forms of relaxation, such as
vibration and chemistry, will be ignored.

BASIC EQUATIOCNS

Equations of Motion

We shall here derive and set forth the equations governing a small distur-
bance potential existing in a two-dimensional radiating, heat generative gas.
For simplicity, we shall assume applicability of the equation of state of an
ideal gas. We shall allow for variation in base flow temperature and density
in the transverse direction (y-dir.) only. The resulting equations will be
specialized when adapted to particular eigenvalue problems appearing in sub-
sequent chapters.

The basic governing gasdynamic equations include continuity, momentum,
energy and state

2+ leu) + 5Hev) = 0 (1)
p(.g%+ug_;+v%;¢ = -2 (2)
p@L + udk + v = - (3)
pcp(-g%-c- u-g%r‘-+ v-g-f: = %{-+ ugﬁ-+ v%ﬁ-— :;%+ Q (&)
p = PRT (5)
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where 3;% represents the divergence of radiant heat flux and Q represents
volumetric heat generation rate in the gas. We shall consider the applica-
bility of linear superposition of small disturbances upon a suitable base
flow such that p = P + p', ete. We shall also make the important assumption
of a steady, uniform, parallel base flow in a field of uniform pressure P and
heat generation §. With the parallel flow assumption we are at liberty to
choose any particular x-direction speed U and adjust all perturbation equa-

tions by applying the simple Galilean transformation (3%- + U ) in place of

5%- for a stationary fluid. Thus, for convenience, we shall temporarlly take
4 =0 in the base flow and superimpose later a _non-zero value as needed.
Allowing for the transverse variation of T and p, linearization yields the

small perturbation counterparts of eqns. (1)-(5) as

%%L + -;;(Eu') + %(Bv') = 0 (6)
Sg_:_'_ . %:EL = 0 (1)

p(at * '%3-37) - = =_§%i v ©)
SRRENY e
P C T

We may define a disturbance potential ¢ according to

o = 3

~ P = -7 2 (11)

Jat

in order to satisfy the first momentum equation. Substituting these into the
second momentum equation yields

vio= 1 (5e) (12)

oI |+

If we differentiate state eqn. (10) with respect to t and_substitute from
continuity eqn. (6) in terms of ¢ while maintaining that p is variable in y
only, we get
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Substituting this and state eqn. (10) into energy eqn. (9) in terms of ¢ gives
us

9q! - -
i _ = P3¢ _ Yy 3¢ _ YR 3 [593 (=
5%, Q' Y1 2 Y1 ,2 "1 3y [T 55 (pe)] (1k)

We shall assume that_there are some fixed characteristic temperature T
and density p, such that T = T _f(y) and, by virtue of the ideal gas law,
p = po/f(y) where f(y) is a base flow function to be specified later. We shall
also define a reference value of the isentropic speed of sound as

(o}

o= fy2 (15)

where y is the ratio of specific heats. Substituting our definitions into eans.
(13) and (14) now gives us

2 P 2
S L 2% 2% , 29% 8
% T % ot f% o+ 5@ (16)
a ot 9x 3y
3q! 2 2
T -a) = o M- e ) (1)
v % af ot ax y

Heat Generation

We need rate equations for q' and Q'. For the latter we need to make
considerations with respect to the neutron physics of the problem. The local
heat generation rate in a reactor core is given by

Q = No _ETp (18)

t

where N is the ratio of Avagadro's number to the atomic number of the gas, ¢
is the fission cross-section, E is the energy released per fission that goes
into heat generation, I' is the local neutron flux and p is the gas density.
As shown by Glasstone and Edlund [9], energy released per fission for the
great mejority of fission modes is approximately distributed as follows:




Kinetic energy of fission fragments 162 Mev

Beta decay energy 5
Gamma decay energy 5
Neutrino energy 11
Energy of fast neutrons 6
Instantaneous gamma-ray energy 6
Total fission energy 195 Mev

N and op are constants for a given core gas. E is some fraction of the
total fission energy. Ordinarily, neutrinos are lost from the system while
the energy associated with the fission fragments and instantaneous gemma-rays
appears almost immediately as heat, and the energy associated with beta and
gamma decay appears as heat over a much longer period of time. The disposition
of the neutron energy depends upon whether the reactor is fast or thermal.
Since a fast gas core reactor would be difficult to control, we should think
more in terms of a thermal reactor where more than 90% of the neutrons must be
thermalized before being absorbed for further fissions. This is accomplished
by letting the fast neutrons diffuse outside the core into a moderator (which
may also be & reflector) of light atoms. There, elastic scattering slows the
neutrons to about 0.25ev whereupon they diffuse back into the core. This
slowing down process takes considerable time, perhaps in excess of one milli-
second, according to Podney and Smith [29]. Thus, in a thermal reactor, a power
excursion (excursion in T') is relatively slow.

The concern for characteristic times expressed above is important when
considering our acoustic perturbation problem which has a characteristic time
dependent upon the speed of sound in the gas. This time is short and therefore
perturbations in heat generation can be taken as quite independent of the long
life neutron flux excursions. Thus, we may view heat generation perturbation
Q' as varying linearly with local density perturbation p' with E taken to be
approximately 168 Mev, the sum of fission fragment kinetic energy and instan-
taneous gamma-ray energy.

Therefore

Q' = No _Elp' (19)

f

If we differentiate eqn. (19) with respect to t and substitute eqn. (6) in terms
of ¢ we have

2 2
2Q" 9 ]
-a—g'— = - No‘fEI‘po[;—xE (%) + —'—aya (%)] (20)



Thermal Radiation

We now need a rate equation for thermal radiation. Assuming local thermo-
dynamic equilibrium in the gas, this may be expressed in terms of intensity Iv
as

1, — = -a_ (I - B) (21)
i

where 1, is the direction cosine of the ith coordinate, a, is a volumetric
absorption coefficient, B, is the Planck function and the subscript v indicates
frequency dependence. The frequency dependence may be dropped by making the
assumption of a grey gas, which implies that the absorption coefficient is
frequency independent. Rather than attempt to solve the multi-dimensional
radiation transfer equation in explicit form,* it may be satisfactory only to
satisfy certain moments of the equation. This was done formally by Cheng [3]
where he substituted for I an infinite series of spherical harmonics. Subse-
quent integration yielded an infinite set of equations equivalent to the origin-
al transfer equation. Truncation to a first approximation and certain simplifi-
cation led to the set of equations

9q,
i o b
5{1— = - (!o (IO - LoT ) (22)
BIO
3, T %% (23)

where o, is the grey gas absorption coefficient, T, is the zeroth moment of
intensity, the space-integrated intensity defined as

I =
[o]

fg“ I(R) 4n (24)

and q; is the directional dependent first moment of intensity, the radiation
heat flux vector defined as

* Tt is to be understood that s formal solution of eqn. (17) can be obtained
for the one-~-dimensional case in terms of integrals. A purely differential
equation can be derived from this by approximating the exponential-integral
kernel E> by a purely exponential function. A recent paper by Gillis, Cogley
and Vincenti [8] propose a non-grey gas substitute kernel whereby they claim
that existing grey-gas solutions need only be reinterpreted in terms of the
non-grey gas case.



q = fﬁ" 1(2) 1,40 * (25)

Vincenti and Kruger [37] have shown that eqns. (22) and (23) can be derived by
assuming that radiation pressure and energy density are related as if the
radiation were isotropic; +this constitutes the so-called Milne-Eddington
approximation.

Elimination of I, from eqns. (22) and (23) will lead to a differential
equation for the heat flux vector expressed as

3q i
9 (3 ko BT 3 =
e %) "X . "8y =0 (26)
i 3 i A

where we have replaced the grey gas absorption coefficient by the reciprocal
of the photon mean free path A, defined as the distance in which a beam of
radiant flux diminishes to 1/e of its original value.

Eqn. (26) has some interesting features worth discussing at this point.
Note first that, if the Planck function oT“/m is uniform, an appropriate solu-
tion is q3 = 0. Next, consider a medium of high absorptivity (fairly opaque).
This means that photons emitted at one point are absorbed at another point
close by. In this case we may drop the first term of egqn. (26) and note that
the transfer of heat now depends upon the gradient of T+, requiring a rapid and
continuous variation in tempereture of the medium to accomplish substantial
heat transfer. On the other hand, a medium of small absorptivity (fairly
transparent) implies that photons are free to travel large distances before
being reabsorbed. This restriction allows us to drop the third term of eqn.
(26), indicating that the medium temperature need not be rapidly and continu-
ously varying to admit passage of substantial heat transfer. It is also use-
ful to note that in each of the above restricted ranges, the heat transfer
depends upon the photon mean free path in such a way as to be less than a
maximum for a given gradient of the Planck function. A maximum rate of heat
transfer (maximum non-equilibrium) would therefore occur for a given Planck
function gradient when A is of an intermediate value and all three terms of
eqn. (26) are in balance. The above features of the radiation heat flux will
carry over to its small disturbance counterpart and to the perturbation
potential equation.

Now, if we linearize each of egns. (22), (23), and (26) for the sake of
our small disturbance theory we shall have

* If the integration is performed over each half-space we may identify one-
sided heat fluxes qI and qj where these are the components perpendicular
to the plane separating the respective half-spaces. The net heat flux is
then related to these by g = qI - q7. The integrated intensity defined
by eqn. (24) is then related according to I, = 2(q} + q3).

10
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Acoustic Perturbation Equation

We may now combine egns. (16), (17), (20) and (29) into a single fifth
order differential equation governing our disturbance potential. First, take
the divergence of eqn. (29) and differentiate it with respect to t. Then,
take the Laplacian of eqn. (16), differentiate eqn. (17) with respect to t
and substitute the results along with eqn. (20) into the differentiated form
of egqn. (29) to arrive at

2 2 2 2 2 2
Cpr g - Pls -t - D1 $- T+ 29 b
ax Yy A a Jt 9x y y 9x oy
(30)
2 2 2 2
P S It e e o h = o
ax oy a ot ax ]

where we have defined radiation and heat generation parameters according to

16(7—1)0T2 -1
K = —= G = I55 ANoET
Ypa a

It will also be useful to get expressions for the integrated intensity
I} and the net heat flux qi in terms of the disturbance potential. We may
accomplish the first of these by differentiating eqn. (17) with respect to t
and substituting it along with eqns. (16) and (20) into eqn. (27), after
differentiating the latter with respect to t. The result is
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The heat flux expression may now be derived by simply tsking the gradient of
eqn. (31) and substituting it into eqn. (28) to get

' -
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ONE-DIMENSIONAL PROBLEM

Nature of Problem

There are several features of our stability problem which can affect the
results, such as geometry (including location and type of boundary conditions),
presence of mechanical or thermal non-equilibrium in the base flow and/or
non-equilibrium effects in the perturbed flow. Two of these effects which are
new to the question of stability are the thermal radiation and the heat
generation. Since it is not our objective to seek solely an answer to that
specific problem which prompted this study, but rather to gain some fundament-
al understanding on a more general level, it will prove instructive to attack
simple problems first in order to more or less isolate one or two of the above
discussed effects at a time; thus, our interest in a simple one-dimensional
problem. In this way we shall be able to show that the dissipative effect of
thermal radiation upon propagating disturbances discussed in papers reviewed
in the INTRODUCTION will carry over in terms of an eigenvalue problem.

Governing Equetions
Our eigenvalue problem will be characterized by a length y, which will be
identified later. Non-dimensicnalizing with respect to this length and assum-

ing a uniform base "flow" the one-dimensional counterpart of eqns. (30), (11),
(12), (31) and (32) become

12
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where we have defined n = y/yo and set f = 1.

Signaling Equation Concept

Before picking a particular geometry and associated boundary conditions
for a one-dimensional eigenvalue problem, it might be interesting to investi-

gate the governing differential equation
equation idea proposed by Whitham [k0].
the form

(s +

3 3 5
3t Tl > % 5x0)¢

2
P (— +
* (at
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for "stebility" via a signaling
Such a signaling equation would take

(38)
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where, if m =n -1 and P > 0, then c; > 8 >cy >rcec>a o >Cp will

indicate "stability", that is damped propagating waves.

We note that our governing eqn. (33) contains three independent para-
meters, namely yo/A, K and G. If we can find limits where only one parameter
appears at a time, we may apply Whitham's idea. In the limit of a completely
cold (K=0) and non-heat generative (G=0) gas a sufficient solution to eqn. (33)
is provided by solving the isentropic acoustic equation.® 1In this 1limit, then,
eqn. (33) may be written P

2 2 .2
g e g (2, 2y 8l ., (39)
ot yo an2 3t yo n t yo n

Obviously, in this simple case, a > -a indicating that we have right and left-
running standing (undamped) waves with signaling speeds of * a.

In the non-heat generative, infinitely hot (K + =) gas limit (Stokes'
flow) eqn. (33) reduces to an isothermal wave equation¥*¥*

2 2 2
9 ¢ a 97 ¢ _ 9 a ) 3 _ _8 ) -
- = (& + =) )= 0 (k0)

an
8% yyy on "y, Y,

which is "stable", giving right and left-running standing waves with signal-

ing speeds of * a//y .

Cogley [U4] has already applied Whitham's idea to eqn. (32} for G=0 for
short time (fairly transparent gas) and long time (fairly opaque gas) when
considering waves propagating into a semi-infinite gas. We shall do the same
for waves of both families. In Whitham's form, the fairly transparent restrie-
tion allows reduction of egn. (33) to

9 a @ 9 o0 ? a 9
i v, ) (5% o3 5 - Y, TYA
(k1)
X, 9 a o 9 a 0
+ B . =Nz - — )¢
A ot J;y an’ "ot J;y on

¥ It can be shown that the isentropic acoustic equation is derivable direct-
ly by omitting thermal radiation and heat generation from the original
perturbation eqns. (6)-(10).

#* pAs Vincenti and Baldwin have indicated, the modified classical wave and

the radiation-induced wave are possible in the hot limit. Which one
will exist and abide by eqn. (40) depends upon the boundary conditions.
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where
a>afy >0> -affy > -sa

while the fairly opaque restriction yields

1 3 3y, 9 8 9.,,9 a 23.,,1 d 3
G2+ D ¢ 22 -2 2y,
3t an’ ‘3t Joy om0 3t /;yo an 3t 3n
o (k2)
3y
0,9 a 3 9 ) 9 a 9
WARD 7 50 (3% Oy ~y )t =

wvhere
°°>a>a/v";>0>-a//y—>—a>-°°

Since yaK/X and 3y2/axK are positive we may conclude that radiative non-

equilibrium has a 8amping effect upon both right and left-running propagating
waves, implying a favorable influence upon stability.

If we now set K = 0 while G # 0, eqn. (33) may be reduced to

3 a 9.y, 3,0 a 9
Ge * v, a5t 0o e A an)¢
(43)
aG,l 3 3.,1 3 3. _
o 3r t o a e s O

where
afoe >0>-—o f-a

Thus, the density dependent heat generation should have a growth effect upon
propagating waves, implying an adverse influence upon stability.
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Single, Heat Generative, Confined Gas

Eigenvalue problem. - For utmost simplicity, we shall establish the eigen
behavior of a single, heat generative, radiating gas with uniform properties#
by subjecting it to small disturbances which can be treated by the theory of
normal modes. We may establish a characteristic modal frequency for this one-
dimensional problem by fixing the dimension of the gas, leaving it confined
between walls at n = 0 and n = 1. Consistent with the theory of normal modes
we may assume & solution in time of the form

o(n,t) = a(n)e vt (kk)

where w = W, + iwi is the complex frequency of the disturbance, the real

part being wave speed divided by a length and the imaginary pert being an
amplification factor. For wy > O the disturbance is exponentially growing
(unstable) while for wj < O it is exponentially decaying (stable), in which
case we may call its magnitude a damping factor.

Substituting eqn. (44) into eans. (33)-(37) gives us
2

2 v iy G .2
L -39l + =2 L2+ G2
dn A AW dn
(45)
iy X 2 2
+ d 22 4 (32%) = o
Aw dn” dn
_ 3 YB_ =
p'(n) = i wd (46)
[o]
_ 1o
v'(n) = y, an (47)
- iy ¢ .2 iy K .2
Ii(n) = LRA (e 282 a2 4 @2 4 ya?e )] (48)
° (Y-l)yo Aw  dn Aw  dn

¥ We are assuming that the uniform base heat generation is removed in some
uniform, fictitious menner. Obviously, in the gas rocket problem, the
generated energy is radiated to the c¢oolant gas which convects it down-
stream.
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-2 iy G 2
q'(n) = __.IL_A.[(]_ + O)d_q’_ + 3%

d - 2
3(Y-1)Y2 " yo dn
(49)
iy K 2
+ —2E 2 4 ya2e))
Aw dn
where we have defined the dimensionless frequency
wy
5 = —2
w o= — (50)

and let p'(n), v'(n), I'(n) and q'(n) represent the n-direction mode shapes of
these disturbance quantgties.

We note that egqn. (45) is of fourth order in space, requiring two
boundary conditions (one mechanical and one thermal) to be specified at each
wall. If we take the walls to be immovable and perfectly reflecting (or
adiabatic) the boundary conditions become v'(0) = +'(1) = q'(0) = q'(1)
0. The first two of these, in view of egn. (47), require

' (0) = o'(1) = O (51)

where the primes on ¢ will hereafter indicate differentiation with respect to
n. Substituting egqn. (51) into ean. (49) will sllow our thermal boundary
conditions to be expressed as

p'11(0) = o'*''(1) = O (52)

Since egns. (45), (51) and (52) are homogeneous we have the makings of an eigen-
value problem.

A formal solution of eqn. (45) is of the form elcn. Defining

iy K

mo= 1 + — (1+%) (53a)
Aw
2 : :
Yo 1yoG 1yy°K
boe m32 Q=) - _)mzl/m (53b)
A Aw Aw
2
g
3 57 w2

(53e)
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and substituting into egn. (45) will yield the characteristic equation
ch - uc2 +v=0 (54)
Since this is bi-quadratic, we have only two distinct values of c¢; call them

+ _ R
o= B (u; )5 (55)

The general solution of eqn. (L45) is then

o(n) = Ae®" + Be 712" 4+ celPM & pe~ibtn (56)

Substitution of egn. (56) into eqns. (51) and (52) and successive elimination
of the coefficients will give us the eigenvalue equation

sinasinb=0 (57)
which has non-trivial zeroes when
aorb=nn wvhere n = 1,2,3, % (58)

It is interesting to note that our solution contains both waveforms, the
modified classical wave associated with a and the radiation-induced wave
associated with b.

In this very simple case it is only necessary to substitute eqns. (58)
and (53) into egn. (55) and invert to find the complex frequency. This pro-
cedure yields a cubic in w.

- - - G
(2’ 1 LS (28 le, S 1=0 (59)
nmw /§y nnw nw nmi ng
AE . 8 AED L
37, 3y,
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If we define

§ = & o = JoO B = (y=1)K (60)
nw nmi 3y
BRI, o)
/5&0 nmi
substitution into eqn. (59) will yield
53+17}§- 62-6-13(%+Y—1'1' = 0 (61)

Discussion. - One of the three roots to eqn. (61) yields zero frequency
and a damped disturbance for all y, o and B. Because the other two roots
yield identical amplification factors i with frequencies 6§, of equal magnitude
but of opposite sign, it will be considered sufficient to display results for
only the positive frequency root.

Neutral stability is ascertained from eqn. (61) by setting §; = O and
satisfying real and imaginary parts. For the positive frequency root this
occurs when 6§, = 1 and a/B = 1. This neutral curve is plotted in Figure 2 in
terms of a relation between the parameters yo/k, K and G. When o/B # 1, the
positive frequency disturbance either grows or decays in time. This behavior
is exhibited in Figure 3 for y = 1.hL.

Most of the interesting features of Figure 3 are associated with ranges
of B. Large B corresponds to large K, a very hot gas. ©Small 8, on the other
hand, ggy correspond to small K (cool gas) or, alternatively, to large or
small 3y°/nwl (low frequency, opaque gas or high frequency, transparent gas).

It should be clear that, when B = 0 (very cold gas or zero or infinite
absorptivity or frequency), the disturbance will travel as a standing wave
at the isentropic speed of sound. On the other hand, when B + = (infinite
temperature), the disturbance will again travel as a standing wave but at the
isothermal speed of sound. The greatest degree of non-equilibrium behavior
(largest amplification or damping) will occur at intermediate 8.

Certainly, we picked a convenient example which resulted in a very
simple eigenvalue equation. Other boundary conditions on the walls could have
been chosen, such as symmetry in v' or perhaps zero perturbation in wall tem-
perature. The variations are numerous and the resulting eigenvalue equations
would often have to he solved numerically for w without the simplicity of
eqns. (58) and (61).

We shall discuss in the next chapter how, in certain limits of the radi-
ation parameters, the full non-equilibrium governing differential equation
reduces to lower order with a consequent reduction in the available number of
boundary conditions. For certain small values of these parameters there will
be possible, then, a small perturbation of the equilibrium acoustic theory to
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include a small measure of non-equilibrium. Since this perturbation is
regular, it should also be possible to accomplish it by formal expansion of
the solution. In the present case, we may formally expand eqn. (61) for a
cool gas with small heat generation. To second degree the solution for the
positive frequency root is

e 143424 3" _ 3 oo < a=f
61‘ l+8-0. +m:%70.8 -B%YT].YB Gi > (62)

wvhich shows clearly that a/R = 1 marks neutral stability. We have already
noted that B << 1 means either AK/y, << 1 or yoK/A << 1 while a << 1 requires
YoG/A << 1 for moderate nr.

Two Immiscible Gases

Analysis. - Since we are truly interested in a problem which contains two
adjacent gases of a different nature, it might be instructive to extend our
one-dimensional problem to include two immiscible stagnant gases with different
radiation absorption capability. Although we are at present pursuing study of
a disturbance mode which is of a very different nature than that which
characterizes a vortex sheet problem, nevertheless, the new version of the
one-dimensional problem will afford us some further understanding of the radi-
ation phenomenon and some knowledge of how to apply appropriate boundary
conditions across the interface separating the two gases.

For the sake of clarity, substitute the definitions of egns. (53) into
eaqns. (45)-(k9) and rewrite the latter here.

¢iv + ud" + v = O (63)
p'(n) = ig;-&b (64)
] - _1;_ ]
v'(n) = y°¢ (65)
I'(n) = —YBA _[nevt 4 (m+ y-1) 526] (66)
o 2
(Y—l)}'o
@' (n) = - =X ettt 4 (m+ y-1) G26] (67)
3(\(-1)3ro
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The properties in each of these, of course, will assume uniform values peculiar
to the gas in which it is being applied.

Eqn. (63) has a general solution of the form
& = A sinan+ Bcos an + C sin bn + D cos bn (68)

analogous to egn. (56) where a and b are given by eqn. (55). If we restrict
the "inner" gas (gas 1) to 0 < n < n; and the "outer" gas (gas 2) ton; < n <1
and require the same immovable and reflecting walls at n = 0 and n = 1, the
boundary conditions of eqns. (51) and (52) still apply. Application of these
will reduce eqn. (68) to

¢, = B, cos an +D, cos byn (69)

for the inner gas and to

., = B, cos a2(l-n) +D

5 o cos b2(l-n) (70)

2

for the outer gas.

We have left four unknown constants. Thus, we must apply four boundary
conditions (two mechanical and two thermal) at the interface between the gases.
The mechanical conditions would amount to matching pressure and velocity. From
eqns. (64) and (65) these may be expressed in terms of the potential function
as g

‘l’l(nl) ¢2(nl) (71)

e1(n;) = o3(n)) (12)

where we shall, for the sake of simplicity, 1limit our analysis to the case
where the gases have equal specific heat ratios and sound speeds. This allows
® to be common to both gases.

The thermal conditions require matching integrated intensity and heat
flux across the transparent interface between the gases. The first of these
amounts to a conservation of photons while the second conserves energy. From
eqns. (66) and (67) these conditions may be expressed as
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m s t(n) + (m + v-1) 524’1 (n)

X (73)
- f [meq,év(nl) + (m2 + y—l) .(:)24’2(711)]
' (n.) + (m, + y-1) w2e! (n,)
Mt 1 101
(T%)

12 2 tee —2a
(I:_L-) [m,o] (nl) + (m2 + v-1) w ¢>2(nl)]

Substitution of eqns. (69) and (70) into eqns. (71)=-(T4) will result in
four equations homogeneous in By, Dy, Bo and Dp. Setting the coefficient
determinant of these equal to zero constitutes the eigenvalue equation. In
terms of present nomenclature this determinant may be written in the form

= 0 i’J = 1, 2, 3, )4 (75)

la

1]

where we are setting

a = cos b,n

o
]

= CcOS a

11 1™ 12 1™
al3h= - cos a2(1-nl) 8,) = - cos bz(l—nl)
a21 = al sin alnl a22 = bl sin b;nl
8,3 = 8, sin ae(l-nl) a,), = b2 sin b2(l-nl)
a.,. = [ a2 - (m, + y=-1)w?lcos a.n. a_,, = [ b2 - (m, + y-1)w2] cos b.n

31 - % T\ 1M 832 T P T 1M

Ay 2 -
833 = - -XI-[mza2 - (m2 + y=1)w?]cos az(l-nl)
A2 2
= . —= - -1 Y2 -
8, N [m2b2 (m2 + y-1)w?]lecos b2(l nl)
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al[mlai - (m1 + y-1)w?]sin a

By < 1M
ay. = b, [ b2 - (m, + y-1)w?]sin b n
ho = P 1MPy 1 1™
.2 2 -
)5 = (Al) a2[m2a2 - (m2 + y-1) w?]sin az(l-nl)

22,2 2 -,
8)), = (KI) b2[m2b2 - (m2+7 -1) w?]sin bz(l-nl)

The roots of such an eigenvalue equation can be found by Muller's numerical
relaxation method (see, for instance, Wilkinson [41]).

Limitation upon radiation parameter. - It is extremely important to
have compatible perturbed and base flows. For this reason we must consider
any restrictions imposed upon the base '"flow" by the assumption of uniformity
of properties in each gas. Complete uniformity of temperature in a gas requires
that either it has zero absorptivity, in which case heat can be transferred
across it without interference from the gas, or it is in complete equilibrium
and not subject to heat transfer. The former case is not very interesting at
present because it yields only isentropic behavior in the perturbation problem.
The latter would require no temperature slip at the interface in the base flow;
otherwise there would have to be some temperature gradient in the gases on
either side of the interface to be in accord with our analysis of egn. (26).
Thus, adhering strictly to the uniform temperature requirement forces us to
consider only Ky = K, for the time being. A problem involving base flow heat
transfer will be considered in a later chapter.

Results. - In pursuing a solution to the eigenvalue problem described in
egn. (75) we shall choose to neglect heat generation since, as will subsequent-
ly be shown, its parameter takes on rather small values in any practical
problem and thus has small effect upon the question of stability. Having
assumed that the gases have equal specific heat ratios and sound speeds and
established that K3 = K, eans. (53), (55) and (75) yield the fact that we have
left only five free parameters, namely vy, yo/A1, Ap/Ay, n; and K. If we wish
to relate the present problem to the single-gas problem* analyzed earlier in
this chapter we may formulate a combination of these parameters to yield one
of the form of B in eqn. (60). Thus, we may now consider our free parameters
to be vy, B, Ap/A;, nj and K.

* By setting my/mp = a,/ap = by/bp = 1 it can be shown that eqn. (75) reduces
from the two-gas problem to the one-gas problem of ean. (57).
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Figure 4 shows a comparison of frequency and damping of the fundamental
acoustic mode for different values of Ap/X;, the Ap/A; = 1 case being taken
as the a/B = 0 result from Figure 3. This figure shows clearly that a maximum
of damping (maximum non-equilibrium) occurs for a given value of K when there
exists an intermediate value of yO/A such that there remains a balance between
the transparent and opaque operwtors upon the wave operator on the left of
eqn. (33). Considering some deviation from this intermediate value of y,/) in
one of our two gases, either toward the transparent limit or toward the opaque
limit, will reduce the non-equilibrium effect. These observations agree with
those made with regard to eqn. (26) in the last chapter.

PLANE VORTEX SHEET IN INFINITE DOMAIN

Problem Description

We shall begin consideration of the question of stability of a vortex
sheet separating two thermally radiating gases. For the present we shall
restrict attention to the problem of uniform base flow properties and zero
internal heat generation. We saw in the last chapter where, if the gases are
absorbent and we assume equal specific heat ratios and sound speeds, we must
adhere to the condition of K; = K>. No such restriction need be applied to
the x-direction speeds of the two gases, however, since we are assuming that
our gases are completely inviscid. In fact, it is exactly the existence of
this velocity slip which produces a new disturbance mode in the perturbation
problem with a characteristic frequency which orders itself to this speed
difference. In the limit of diminishing velocity slip this mode vanishes
(zero frequency) in a manner described in Lamb [1k].

To avoid the complication of additional lengths we shall, for the present,
consider the plane vortex sheet to be separating semi-infinite gases. In the
isentropic limit, then, our problem will reduce to that considered by Pai and
Miles. A schematic sketch of the problem we have Just described is shown in
Figure 5.

Governing Equations

By taking the Galilean transformation 3/9t = 3/3t + U 3/3x we may super-
impose a uniform speed U upon either gas in our problem. Doing this and taking
f=1and G =0 in eqns. (30), (11), (12), (16), (17), (31) and (32) yields
the equations governing the present problem.

> 2 ) > 2
3 3,9 3 3.1, 3 3 3
SN BYC W R RIS N IR RE R i W Y
3t EIANEIMINE S LAl © ™ o ay?
ak (3~ . 9 yrx (o 9y, _9¢ 3 ¢y _
t T Cm R (U e- 5 -3l =0
ox a 9x oy
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P’ o= =B U (17)

= 9%
u' o (78)
y = 29
v Ay (79)
13,y a X (2 aydye «20 , 3% (80)
T ‘3t x B 2 ‘a3t 9x 2 2
(o] a 9x oy
3q! 2 2 2
= W RS NP BN Tt i (81)
- 3xi 2 '3t ox 2 2
Yp 4 oy
(=2 U.E_)I-=_I§l{(3_+ua_)[_l_i_+ui)2¢ _ 3% _d%
ot ax y-1 ot 9% a2 ot 9x ax ayz
K,y , 3.2 2% 2% (2
* Xt U o - T - B
a 3x Ay
-2 2 2 2
2 Iy, = A__ 3 (8. KIRY I - 9. 3¢ _3¢
G+ VY = 38D o, {(at"Uax)[ae (3t+U8x)¢_ax2 ayzl
ak ry (2 ] 2 329 829 (83)
*+SlmGprug e -—- =30
a 9x dy

Note that the group of terms in the square bracket to the left of eaqn. (76)
constitutes the Prandtl-Glauvert operator. The group of terms in the square
bracket to the right constitutes a Prandtl-Glauert operator with an isothermal
speed of sound, hereafter referred to as an isothermal Prandtl-Glauert
operator.

Apparent Singular Behavior

In certain limits of our radiation parameters the governing eqn. (76)
appears to contain singular behavior. Similar to the observations of Vincenti
and Baldwin, we see that, when A - 0, A >+ or K-+ 0, the terms to the right
of eqn. (76) go to zero and a correct solution can be found from the isentropic
Prandtl-Glauert equation, which is a reduction in order from the original
differential equation. Likewise, when K + =, the terms to the right in eaqn.(76)
dominate and a correct solution is found from the isothermal Prandtl-Glauert
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equation, again a reduction in order from the original differential equation.

As Van Dyke [35] points out, such behavior in a small parameter limit signals
singular behavior unless the boundary conditions are consistent with the reduced
equations. This consistency is exactly the case here and it is most easily

seen by returning to the original equations governing the thermal radiation,
eans. (22), (23) and (26).

In the limit A » O, eqn. (26) infers that q; = O while egn. (22) says
I, = Lot Thus, in a completely opaque gas, the intensity can be a non-zero
value depending upon the local temperature, but there can be no heat transfer
because photons emitted at a location are immediately reabsorbed an infini-
tesimal distance away. Now, since continuity of temperature is consistent with
the isentropic equilibrium solution and intensity is proportional to it, we
conclude that thermal boundary conditions will vanish in a manner consistent
with the reduction of the governing differential equation. It is only neces-
sary, then, to consider the Prandtl-Glauert equation subject to appropriate
mechanical boundary conditions in pressure and/or velocity.

In the limit A + « eqn. (22) yields 3q;/9%; = O or qj = const. while
eqn. (23) yields an/axi = 0 or Iy = const. This says that radiant heat energy
of a given intensity can traverse a completely transparent gas without
alteration of its value, i.e., without interaction with the gas itself. There-
fore, any thermal boundary conditions independently imposed at the boundaries
of such a gas will have no effect upon the the gas. Once again the Prandtl-
Glauert equation applies, but in this case, there can be temperature slip
between the gas and its boundaries since there is, in effect, no thermal con-

tact.

In the 1limit K + 0, or zero temperature, eqn. (26) can only admit the
homogeneous solution g3 = 0. From eqn. (22) this says I = 0. Therefore,
in a completely cold gas the thermal boundary conditions must vanish in a
manner consistent with the reduction to an isentropic governing Prandtl-
Glauert equation.

In the remaining limit of K > =, an infinitely hot gas, egn. (26) implies
an infinite rate of heat transfer and therefore an isothermal state in the gas,
regardless of the thermal boundary conditions. Thus, mechanical disturbances
in this gas are governed by an isothermal form of the Prandtl-Glauert equation
and are influenced only by mechanical boundary conditions.

The observations discussed sbove with respect to egns. (22), (23) and
(26) can be shown to hold with respect to their small disturbance counterparts,
eqns. (76), (82) and (83). The overall conclusion from this discussion is
that no singularity really exists and, as Vincenti and Baldwin have pointed
out, solutions to the perturbation potential eqn. (76) will pass over smoothly
into those of equilibrium acoustic theory at these parameter limits. Of
course, this will mean the loss of the radiastion-induced wave, leaving only

the classical wave-~-form.
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Cool Gas Limits

Reduction of equations. - We mentioned in the last chapter the possibi-
lity of perturbing the equilibrium acoustic theory to include a small measure
of non-equilibrium. We may perform this perturbation directly upon the full
governing non-equilibrium differential equation for certain small values of
the radiation parameters. The result will be a differential equation of
lower order subject only to mechanical boundary conditions. We shall demon-
strate this for a gas which is either opaque, cool or transparent, cool.

In the completely transparent 1imit, there is no absorption in the gas
and eqgn. (76) reduces to the isentropic Prandtl-Glauert equation

2 2 2

) ) _ 1 9 ()
(=5 + 58 =S Gp+rugzde (84)
9x ay a

If we use this as an approximation in the right-hand group of terms in eqn.
(7€) we may recover some measure of non-equilibrium behavior in the trans-
parent, cool limit with the second order governing differential equation

2 2 2
1,9 3 ) ) (y=1)K , 9 Oy -
[——2(——at +U _ax) - (—-—2 + —2)]¢ + e ('_at +U 8x)cl» = 0 (85)
a ox y

In the completely opaque limit, there is infinite absorptivity and eqn.
(84) again applies. Using the latter as an approximation in the right-hand
group of terms in eqn. (76) will provide a small measure of non-equilibrium
behavior in the opaque, cool limit governed by

2 2 2 3
1 2 2 3 L3 (y-1)XK 3 RS

It is sufficient for the question of stability to assume a solution
periodic in the x~direction. Thus, consider the vortex sheet to be perturbed
from its nominal position according to

h(x,t) = hoeia(x‘Ct) (87)

where och << 1 in accord with our requirement of small disturbances to a
uniform gtream, a is the real wave number and ¢ = cp + icy is a complex wave
speed. Note that cj > O indicates exponential growth in time.

Compatible with eqn. (87) we would assume a solution for our
disturbance potential in x, t of the form

6 (x,7,8) = o(y)elc(x-ct) (88)
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and a solution for & as
o(y) = Ae” %Y 4 B (89)

where, for a transparent, cool gas

- - e | LK e (90)
g= T Y a T aA a 7
and for the opaque, cool gas
2 . 3
_ c-U i{y-1)a)X ,c-U
o= {1~ (55 [1+ 2IOR (S (91)

where we restrict the branch such that 0. > 0.

Eigenvalue problem. - Eqn. (89) demands application of two boundary
conditions in each gas. Placing the vortex sheet nominally at y = 0, we may
require vanishing disturbance as y > «.* This leaves us with

= ao.y
¢ =Bl (92)

for the gas in y < 0 and

Z p o=00.Y
¢2 = A2e 2 (93)

for the gas in y > O.

* In the limits of K/aA = 0 for a transparent gas or aAk = 0 for an opaque
gas, eqn. (8L) goversn and we have the possibility of undamped outgoing
waves in the case of supersonic disturbances (|e-U]| > a). Lin [20] remarks
that, unless we impose some restriction at infinity in this case, we have
no discrete characteristic value problem. In the presence of thermal radi-
ation, however, the decay of the disturbance as it propagates to infinity
is a natural consequence, even for supersonic disturbances, and the im-
position of a vanishing condition at infinity is not unduly restrictive.
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The remaining conditions are satisfied by matching the pressure and
normal velocity component across the vortex sheet at all times. The second
of these requires

ah - ' _a_hv_ = ] - &

Using eqns. (77) and (79) and substituting eqns. (87) and (88) into eqn. (94)
will allow the two matching conditions to be expressed as

Y1 Y2
2 (e-uy) 0,(0) = 2 (c-u,) 0,(0) (95)
& &2
B = L1 a1
W @1(0) = C—U2 4’2(0) (96)

Finally, if we substitute eqns. (92) and (93) into eqns. (95) and (96)
and eliminate coefficients, we will be left with the eigenvalue equation

- o
— - —F— (97)
v (L v (2)
®1 2

We remark that this equation is similar to the one treated by Wang for chemical
non-equilibrium in the perturbed flow and that it is reducible to that treated
by Pai and Miles for isentropic flow.

Stability. - We first question whether or not eqn. (97) contains a
neutral stability curve. We should first check to see if there is any region
where eqn. (97) cannot govern when o. > 0. Let c = c. and consider

3-
- = 2 24" 8 s O
o= /ar + iai = (ar + ai) (cos > * i sin 2) (98)

where 6 = tan-l(ai/ar). Define -m < 6 < m for the desired branch for single-
valuedness. Our present problem is to determine when o = icj only, and this
would occur only when a. < 0 and a;= 0. This happens only when |(cr-U)/a| > 1
and k = 0 where, for the sake of argument, we have defined k = alK for the
opaque, cool gas or k = K/al for the transparent, cool gas. Thus, so long as
k > 0 in both oy and o, We are including all possible neutral disturbances.
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Now, we separate real and imaginary parts of egn. (97) for c; = 0.

C1ir _ _ Yr 11 _ % (99)
c -U, ¢ c =U. 2 e -U. 2 c =U

y, (—3) v, (X—2) v, (X5 vy, (X—2)

1 al 2 a2 1 al 2 a2

Since g, > O for all cases of k > 0, it is immediately apparent that the first
of eqns. (99) cannot be satisfied when k > O in either o, Or o,. Therefore,
we conclude that there is no neutral stability.

Next, we must determine whether the vortex sheet is completely stable or
unstable. We can do so by mapping to a Cauchy-Nyquist diagram. Define

C—U2 2
vol5=) o)
Gle) = —2 (100)

so that F(c) = 1 + G(e¢) = 0. If, in plotting the whole upper half c-plane
onto the G—plane, we encircle G = -1, then the sheet is unstable. Note the
double zero at ¢ = U, and the double pole at ¢ = Uy We must find the loca-
tion of branch points of G(c¢) which will be, of course, the branch points of

the o's.

For the transparent, cool gas we have branch points at

STy -y (101)

both of which are in the lower half c-plane.

For the opaque, cool gas we have branch points at

o0
H
pic

+ \/1 - plemtledk 5 Grebadk (102)

both of which are in the lower half c-plane.

Thus, mapping the upper half c-plane onto the G-plane we have only one
real concern, which involves the double pole at c = We need not actually
map the G-plane but only notice that if we set (c-Ul)}al ¢el® and move
counter-clockwise about ¢ = Uy from 6 = 0 to 6 = 7w, the argument of G(ce) goes
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correspondingly from O to 2%, thus encircling the G = -1 point once. There-
fore, we conclude that the vortex sheet is unstable for kj or ko > O regard-
less of whether the gases are transparent or opaque, cool. This will be taken
to mean that there is at least one mode which is unstable; there can be other
modes which remain stable.

Static considerations. ~ It would be interesting to ascertain why =a
vortex sheet between two semi-infinite isentropic gases can have a region of
neutral stability according to Miles' criterion but complete instability occurs
if either gas contains a measure of non-equilibrium behavior. We may do this
in a crude way by treating the vortex sheet by static considerations as did
Ackeret (see Liepmann and Puckett [19]). What we are about to do is treat the
vortex sheet as though it were a flexible wall with a prescribed motion

h = h Re [eia(x-crt)] (103)

where h, is a small constant and c, is a real wave speed only. Thus, we are
now treating a determinate problem rather than an indeterminate eigenvalue
problem. Consider the gases to be moving in opposite directions and each at
a speed relative to the wall equal to half their velocity difference.

Consider first the gas in y > 0. If we differentiate the disturbance
potential eqn. (85) or (86) once with respect to y we can just as well express

either of them as operators on the disturbance velocity component v'. The
corresponding solution to eqns. (88) and (93) for y > 0 is

v' = A Re [e"%0Y * ialx-c t), (104)

where o is given by either eqn. (90) or (S1). The prescribed motion of the
wall will now fix the value of A, that is
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7
' =& _ 3h sh _ ia(x-c t + 5=)
v'(0) = It & U ™ hoa(U cr) Re [e r 2a’] (105)
Therefore, eqn. (104) becomes
. m
v' = hoa(U—cr) Re [e7O%Y * 1a(x-crt + 2a)] (106)

We may now integrate eqn. (106) with respect to y and differentiate it
with respect to x and t in accord with eqns. (77) and (79) to get the
perturbed pressure field

- 2 . 1, -1°%
thoa(U-cr) ~agy + 1a(x-crt - = tan «'g—)
P! o= - — Re [e r ] (107)
2 2
a Jor + o2

On the wall on the y = ot side eqns. (103), (106) and (107) become

h(x,t) = h _cos a(x-crt) (108)

vi(x,t) = hoa(cr-U) sin a(x-crt). (109)
yﬁhoa(cr-U)2 1 -1 95

p'(x,t) = - > cos a(x-c_t - = tan 5 (110)
ar"oz%-foi r r

Now, if we look at the y = 0 side of the wall, the phase changes by w,
thus meking a sign change in p'. In the case of isentropic gases

c_ -U c -U c -U

o = 1 -~ (£—)2 so that if |[-F—| < 1 then ¢ = o_ only and if |-=—| > 1
8 a r a
then o = iai only. Consequently, for supersonic wave speeds (relative to the
c_-U
stream) there is a phase shift of 7/2 in the pressure. If | : | > 1 for both

streams, but in opposing directions with respect to the wall, we may have
cancellation of forces on the wall. At time t this appears as shown below.

Uy, >a,
>
—

+
min's N & X
max's Uy>a,

3z




Otherwise, if the streams are subsonic with respect to the wall, there is
reinforcement rather than cancellation of pressure forces. This is also
sketched below.

min
Up<a,
max g
B x
max ?
Ul <aj

min

We should perhaps keep in mind that, in accordance with Miles' theory,
it is a necessary condition for neutral stability that |U2- U1| > (a1 + an),
but not sufficient. In other words, a single mode only obtains neutral
stability, having the above pressure shift, when |U2 - Ull > (al + ag),

thus causing the eigenvalue equation to be satisfied. However, when

|Us-Uy | > (a12/3+ a§/3)3/2 all modes are neutrally stable and would then
correspond to the pressure balance shown.

Now, when k # 0 we always have o = o, + i0y, that is Ops 04 # 0. In
this case, the tan‘l(oi/or) term causes the phase to vary continuously within
0 to 7/2. With k > 0, the phase shift must be less than v/2, even for super-
sonie wave speeds. This condition is exhibited below.

Stabilizing or de-stabilizing effects. - From the preceding argument we
may infer that a measure of non-equilibrium is de-stabilizing to supersonic
disturbances but stabilizing to subsonic disturbances (although both remain
unstable). Unfortunately, however, we can show that the stabilizing effect
is small while the de-stabilizing effect is large. We shall argue in the
following way:

For subsonic flow relative to the wall in the above static analysis,
tan~1(o;/0r) = O when k = 0. Upon increasing k from the zero value we cause
a corresponding increase in ci/or but the value of tan‘l(oi/or) increases from
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zero very slowly. This means that the pressure shift is quite small for an
incresse in k (of either gas) and consequently, the subsonic stabilizing effect
is small.

For supersonic flow relative to the wall in the above static analysis,
tan-l(oi/cr) = 7/2 since (oj/0y) > » when k = O. A small increase in k brings
about a great change in ci/or and a correspondingly substantial decrease in
tan-1(o;/0p). Therefore, the pressure shift (from the isentropic shift of w/2)
is large and consequently, the supersonic de-stabilizing effect is large.

The above argument, on the basis of static considerations, is crude but
qualitatively correct. In a subsequent section of this chapter we shall see
that these observations for small k prove out.

Physical interpretation. - Perhaps the most pertinent question at this
point is "What is the physical explanation for the fact that the presence of
a measure of thermal radiation non-equilibrium in the perturbation of either
gas has the stabilizing or de-~stabilizing effects discussed above?" We can
offer an explanation by way of comparison to the case of isentropic gases. For
the latter, when |Up-Uy| > (a1 + &), a disturbance propagating away from the
vortex sheet cannot radiate acoustic energy back across the sheet into the
other gas and consequently, the gas into which the disturbance is propagating
acts in a spring-like manner to the disturbance. On the other hand, when
|U2—U1| < (a7 + ap), there can be a feed-back of acoustic energy and a conse-
quent loss of some of the spring-like behavior.

In the presence of thermel radiation, some energy (of a disturbance) can
be transmitted at the speed of light. This means that, when a disturbance is
propagated into one of the gases, this gas has the ability %o "relax" the
disturbance. When ]UQ—U1| > (al + ap), this diminishes the spring-like
resistance of the gas whereas, when |Up-Uj| < (27 + a5), this "relaxation"
reduces the amount of acoustic energy feed-back across the vortex sheet to a
small degree.

Infinitely Hot Geas

In the last section we discussed the fact that there is a region of

neutral stability (ci = 0) for supersonic disturbances when |U2-U1| >
2/3 2/3,3/2

(al +a, )
parent (A = «) or completely cold (K = 0) gases. Another region of neutral
stability can be shown to exist in the limit of an infinitely hot (X = «) gas.
We have already discussed Vincenti and Baldwin's observation that either the
modified classical wave or the radiation-induced wave can exist in this limit
depending upon the boundary conditions. Since, in the isothermal limit, the
radiation-induced wave produces a field which is uniform in space (due to its
infinite propagation speed) and our boundary conditions are homogeneous at
|y| + o , we cannot expect any disturbance propagating with this wave to
be maintained. On the other hand, a disturbance propagating with the modified
classical wave at the isothermal speed of sound can produce variations in the
field properties of pressure and velocity, contributing to disturbed motion of

in the limits of completely opaque (A = 0), completely trens-
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the vortex sheet. Thus, we need only study the stability of disturbances
governed by the isothermal form of the Prandtl-Glauert equation*

2 52 -
5 (——- + U3 ) $ - (——5- + —3)¢ = 0 (111)
a 9x 3y

and the mechanical boundary conditions of eqns. (95) and (96).

The problem we have now described is completely analogous to that of
Pai and Miles but for the replacement of the isentropic sound speed with the
isothermal sound speed. Taking Y1 = Y2 = Y subsonic disturbances now appear
when |U2-U1| < {(aq + ag)/ y with one of the two principal modes being unstable.
Supersonic disturbances appear in three principal modes with one unstable when

(ay + ap)/y < |Up-U;p]| < (32/3 32/3)3/2//;
2/3 §/3>3/2//; .

and all three neutrally stable
when |Up-Up| > (a]

In the next section of this chapter we shall show numerically that the
solution to the isentropic (cold gas) limit goes smoothly over into the solu-
tion in the isothermal (hot gas) limit.** In view of the fact that we have
instability for the plane vortex sheet in the isentropic and isothermal limits

for |U2-U | < (a§/3 + a§/3)3/2 and IU I < (a2/3 2/3)3/2//; respectively,

and that a measure of non-equilibrium is de-stabllizing for supersonic disturb-
ances in the cool gas cases, we may project that there will be no complete
stability in any intermediate region of non-equilibrium.

Non-Egquilibrium Region

Problem formulation. ~ We shall now extend our study of the stability of
the plane vortex sheet in an infinite domain through the region of radiative
non-equilibrium. To do this we must derive our eigenvalue problem from the
full differential equation and boundary conditions. The equations which govern
our problem are egqns. (76)-(83). If we apply the small disturbance solution
in (x,t) given by ean. (88) these may be expressed as

* This can be derived directly from the original perturbation equations
starting with assumption of zero perturbation temperature.

*¥* Tt appears that the subsonic and supersonic phase relations described
for Ackeret's wavy wall in the isentropic limit are destroyed with the
introduction of radiative non-equilibrium but restored upon reaching the
isothermal limit.
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where we have defined n = ay,

m=1 + Ei%%§67 (120)
5.2
n=m- [y(m-1) + 1] (57) (121)

and dropped x-direction heat flux and its derivative in accord with our smsall
disturbance requirement. Heat flux boundary conditions can then be applied
to leading order at the nominal position (y=0 in the present case) of the
interface.

Defining
u = [n+m+ 3 5 }/; (122)
(ar)
2
v o= n+ (ai)z [1- (5% ]}/m (123)
_omt (p2 - by)EE
o (124)

where, for uniqueness, Re(a,b) > 0, we may write a general solution to egqn.
(112) as

-bn

+ CeP" + De (125)

Eigenvalue problem. - Egn. (125) requires four boundary conditions in
each gas. Requiring finiteness as |y| - = leaves the solution

= an byn
¢ Ale + Cpe (126)

for the gas in y < 0 and

-9_2 n —b2n
¢, = Be + Dye (127)

for the gas in y > 0.
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The remeining conditions consist in matching pressure, normal velocity
component, integrated intensity and heat flux across the vortex sheet. The
first two of these are given by eqns. (95) and (96). Using equns. (118) and
(119) the latter two may be expressed as

Y14y " Toro .

YL (m,$7(0) ~ n,9,(0)] = Yool [my67(0) - ny4,(0)] (128)
2 2

Y, A YAA

Yi Lim 037'(0) - n8](0)] = ;—Z% [my63'"(0) - ny2(0)] (129)

Substituting eqns. (126) and (127) into egns. (95), (96), (128) and (129)
will yield a set of four homogeneous equations in A3, C3, B2 and Do. Setting
the coefficient determinant of these equal to zero constitutes the eigenvalue
equation. This will take the form

|ag I = 0 i, = 1,2,3, 4 (130)

If we simplify by setting v;/y2> = a1/ap = 1 and Uz = O (only the relative
speed of the gases is important) the individual components of egns. (130)
become

a = 1 a = 1 a = c-U a - . c-U
11 12 13 ¢ 1h e
& = a 8 = D a = 'ci?' a = .‘ih.
21 1 22 1 23 el ok 20
— 2_ a = m'b2_
837 5 ME -0y 32 1°1 T %y
a = - 12_ m a2 -n.) a = - ig-(m b2 -n.)
33 Al 272 2 34 A, 2 2 2
a = a_ (m a? - n.) a = b, ( b2 - n )
41 1\8 - L2 1'%~
A A
= (&) 2 - (2 2
B3 T (Al) a,(ma, - n,) guy = (Al) b, (m,by, - n,)

where we have defined ¢ = ¢/a and U = U2/a.

Results. - In producing numerical results it is sufficient to choose cer-
tain typical values for our parameters. We have proven in the last chapter
that, for a given value of K, maximum non-equilibrium occurs when the trans-
parent and opaque operators in eqn. (76) are balanced. Therefore, we may for
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the present purposes, consider it sufficient to select al =(Q(1l) for each gas
and pursue the complete range of K.

Since we are concerned with the question of instability we shall choose
to produce results only for the unstable mode emanating from the principal
branch described by Miles. The guestion remains as to what slip speeds to
choose. Figure 6 shows the stability behavior of the most unstable mode in
the isentropic and isothermsl gas limits. Since the behavior changes between
subsonic and supersonic disturbances and agein when supersonic neutral
stability is achieved, we should choose at least one value of U in each of the
ranges U < 2//y, 2 < U < 2/2/y, 2V/2/y < T < 2/2 and T > 2/2.

Figures T through 11 display the stability behavior of our selected mode
through a large range of K for chosen values of vy, aly, alo and 0. It is
readily seen that there is no region of complete stability in the presence of
radiative non-equilibrium. The wave speed Er remains equal to U/2 through-
out the non-equilibrium range while the amplification factor undergoes a
smooth transition between the isentropic and isothermel limits. Subsonic
disturbances are monctonically stabilized to some extent depending upon U while
supersonic disturbences ars de-stabilized and then stabilized as K increases.
Disturbances in the range U > 2/2 lose their neutral stability as K increases
from zero but become neutrally stable again as K + =, Note especially that,
for the case where 2#2/7 < U < 2J§, the mode is unstable at the K = 0
end but becomes neutrally stable as XK + =,

Discussion. ~ Earlier in this chapter we explained the physical consequence
ot introducing a measure of radiative non-equilibrium to initially isentropic
flows. The relaxation effect upon the disturbance as it propagated into
either gas explained the de-stabilization to supersonic disturbances. Now,
however, as the gases become hot enough, thermal radiation is quite profuse,
tending to smooth out all temperature variations and reduce the intensity of
the mechanical disturbance throughout the field. Thus, a new (isothermal)
relationship 1s established between pressure and velocity at each point in the
field and the vortex sheet beccomes less unstable for & given velcoecity slip
across it.

With regard to the stability of the vortex sheet between semi-infinite
isentropic gzases Pai remarked that, in general, the characteristic equation has
infinite roots. However, &s Miles has shown, the principal branch of the
solution to the characteristic eguation has only two roots for subsonic
disturbances and three roots for supersonic disturbances. It has been our
objective to identify in our problem only these principal branch roots and,
in particular, to follow the behavior of the most unstable one. There remains
& question, however, with regard to the possibility of modes generated in
conjunction with the radiation-induced wave in a region of radiative non-
equilidbrium. A purposeful attempt was therefore made to alter the parameters
of our problem in solving the characteristic equation to see if new unstable
modes, not identifiable with the classical acoustic wave, could be found.

This effort did not bear fruit and perhaps it is not surprising. Vincenti and
Baldwin have indicated that disturbances of a mechanical nature (for instance,
pure hermonic wall motion) give rise predominantly to the modified classical
wave while the radiation-induced wave is present to a lesser extent and has
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high speed and large damping over most of the parameter ranges. Thus, it is
highly likely that any modes that might be associated with the radiation-
induced wave are very stable and not of concern.

VORTEX SHEET NEAR SYMMETRY PLANE

Equilibrium Limits

In this chapter we shell extend our problem to include the stability of
a plane vortex sheet near a virtual boundary, which may be a plane of symmetry
for a two-dimensional Jet or weke. We shall continue our assumption of an
isothermal hase flow, thus allowing radiative non-equilibrium to occur only
in the perturbations. We shall speak of the "inner" gas as that which is
confined and finite in dimension and the "outer'" gas as that which is bounded
only at infinity. An sppropriate sketch is shown in Figure 12,

Betchov and Criminale has Iindicated a stebilizing influence upon the
vortex sheet in incompressible flow when introducing a wall into one of the
isentropic streams near the sheet. The nearness of the wall is measured in
terms of oy; where o is the wave number of the disturbance and y; is the
distance between the vortex sheet and the wall. The smaller ay;, the more the
stabilizing influence.

In contrast, as Gill and Lessen et al mzke clear, introducing a virtual
boundary to supersonic disturbances in isentropic gases will have Just the
opposite effect. The disturbances are now able to travel without decay to the
boundary and reflect back toward the gas interface. For supersonic disturbances
which are initially unstable the introduction of the boundary is less and less
stebilizing at higher and higher slip velocities until finally. when
'U2—U1| > (ai/3 + a§/3)3/2
by virtue of the fact that waves can reflect back and forth within the inner
gas at resonance angles releasing large smounts of energy to the sheet. The
over-all consequence of a virtual boundary existing near the vortex sheet in
isentropic flow will be to afford instability at all slip speeds.

s there is a de-stabilization. The latter occurs

The consequences of placing a virtual boundary within "sight" of the
vortex sheet as outlined above will carry over completely to the isothermsal
equilibrium state when the gases are very hot. In pursuing the argument, we
need only to replace the isentropic sound speed with the isothermsal sound
speed.

An interesting feature of the presence of a virtusl boundary is the fact
that the wave speed of the principal unstable mode is reduced, no longer
allowing us to identify subsonic and supersonic disturbances (|c-U| < a and
lc-Ul > a respectively) strictly with particular ranges of slip speed. Now,
a disturbance may be subsonic relative to the inner stream but supersonic
relative to the outer stream, for example.



Eigenvalue Problem

The equations governing either the inner or outer gas are listed as
equs. (112)~(121). The solution expressed in eqn. (125), or more particularly
ean. (127), still is appropriate for the outer gas. The inner gas, however,
has a virtusl boundary a distance ay; away from the interface. Thus, it is
more convenient to redefine u from eqn. (122) as

b o= -[n+m+ : i)za/h (131)
a

leaving egns. (123) and (12L4) as they are, and giving the general solution for
the inner gas as

@l = Al sin a;n + Bl cos a.m + Cl sin bln + Dl cos bln (132)

It will be convenient to transfer the origin of our coordinate system to
the plane of symmetry and consider only the problem bounded in 0 < n <=,
Thus, the inner gas is ccnfined in O < n < ayj; while the outer gas exists in
ayj £ n <=, The cholce of boundary conditions to be specified at the plane
of symmetry is arbitrary. Since the results for symmetrical and anti-
symmetrical disturbances in isentropic gases are qualitatively the same, as
exhibited by Lessen et al [17], we shall limit our choice to symmetry in
pressure and integrated intemsity. Thus, our boundary conditions at n = 0
become v!(0) = q{(0) = 0. Analogous to our one-dimensional problem these are
expressed as ${(0) = ¢{''(0) = 0 in terms of the potential function. Applying
these to eqn. %132) leaves

¢, = B, cos a;n + D, cos byn (133)

As before, we match pressure, normal velocity component, integrated
intensity and heat flux across the interface. From egns. (87), (113), (115),
(128) and (119) these are

Yy Yo
—5-(c-Ul)¢l(ayl) = -§-(c—U2) @2 (ayl) (134)
8 &s

L ot(ey.) = —=— ¢!(ay.) (135)
ooy ‘1t T emy f2'y >
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;%;%'[ml¢i'(ayl) - n,¢, (ay, )]
) 6
;i;%‘[m2@é'(ayl) - n,9,(ay, )] (136)
Ylki [m a! " '
PR (ay,) = n e)(oy,)]
':Z—ig [m2<ilé' "ay. ) - nye)(ay, )] el

If we once sgain assume, for simplicity, that y,/ypo = &3/ap = 1,
Up =0, c =c/a and U = Up/a and substitute egns. {133) and %127) into egns.
(134)-(137), we shall have the eigenvalue equation

lagyl =0 i, = 1,2,3,4 (138)
where
a = cos a.a a = ¢c08 b 3, =—~E—£ a =-§;ﬁ
11 1% 12 1% 13 2 ik =
Ea., cb
a = g, sin a_¢ & = b, sin b, g a z o 2 a =____@_
21 T B3 1%1 8pp T 9y SIR D1O¥, 8 _— ol =
c~-U c=U
a =(ma2+n)cosaay a =(mb2+n)coqbay
31 171 1 1Vl 32 31 1 R R
A
a =—g(ma2—n) a =A—2(mb2-n)
33 2 2°2 2 3k T A 22 " T2
1 1
a =a(ma2+n)sina.ow a =b(mb2+n)sinbogr
b1 1171 1 R R | Lo 1711 1 11
AL 2 A, 2
= (2 2 = (-2 2
a3 = (37) ay(mpa; - ny) 2y, = (55) bylmby - ny)

1 1
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Results

Eigenvalue behavior. - We have now posed a problem which depends upon the
proximity of a plane of symmetry to the vortex sheet. Since our objective is
primarily to discern the effect of thermal radiation upon the vortex sheet
stability, we shall not attempt to exhaust solutions for a complete range of
the new length ay;. This has been done by Betchov and Criminale for subsonic
flowv and by Lessen et al for supersonic flows. We shall consider it sufficient
to choose a single fixed value of ay; such that the proximity of the plane of
symmetry does cause a discernible effect upon our unstable principal acoustic
mode, and then proceed to study the effect of the thermal radiation upon this
mode g5t different slip speeds. We shall see that the radiation effect is
superimposed in such a way as to allow generalization for other reasonable
choices of ay;.

Figures 7 through 11 present the results for the present problem. In the
K << 1 1imit approsching the isentropic case we find that the results agree
with those of Betchov and Criminale and Lessen et gl. The subsonic and super-
sonic flows for U < 2/2 have been stabilized by the proximity of the plane of
symmetry while the supersonic flows for U > 2v¥2 appear to have been de-stabi-
lized. Taking account of the lower speed of sound in the isothermal limit,
these results carry over as previously described. Tt is interesting to note
that the disturbance wave speed is reduced in the isothermal limit by virtue
of the presence of the plane of symmetry. This is apparently due to the fact
that the acoustic wave traveling in the inner gas does so at the lower sound
speed and thus takes longer to reflect back to the interface where it rein-
forces the wavy nature of the disturbance. This drop in wave speed with higher
temperature iz much less pronounced for the subsonic cases since the distur-
bance decays while propagating within the inner gsas.

Through the transition region of radiative non-equilibrium between the
isentropic and isothermal limits the behavior of the unstable mode is smoothly
varying, effecting the transition from the higher isentropic values toc the
lower isothermal values, primarily through the region of maximum non-equili-
brium. Changing the order of the opacity in either gas will delay this trans-
ition since, as we have previously observed, a gas with either a high or a low
opacity will act more in an isentropic manner at moderate temperatures. For
instance, letting either gas be fairly opaque will allow us to drop the trans-
rarent operator in the left of eqn. (76), leaving us with the parameter prod-
uct AK before the isothermal term. It is then apparent that higher tempera-
tures sre required to achieve an isothermal state in the gas. Such an exam-
ple, allowing the inner gas to be more opaque, is exhibited in Figure 10. On
the other hand, if we allow one of the gases to be fairly transparent, we
may drop the opague operator on the left of egn. (76), leaving us with the
parameter product K/A before the isothermal term. Again we would require
higher temperatures to achieve an isothermel state in the gas.

Profile functions. - We may make a few remarks of interest with regard
to the profile functions of perturbation pressure, velocity and temperature.
From eqns. (113), (115) and (116) we may define profile functions for the inner
and outer gases as
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Figures 13 through 16 show selected plots of these functions in terms of
their magnitude and phase. The profile of pressure has been normalized at the
interface. One of the interesting features concerning the distribution of the
profile functions is that they are not purely exponentiamlly decaying into the
semi-infinite outer gas as they would be for isentropic flow. Because the
thermal radiation acts only as a second order modification of the classical
(isentropic) acoustic behavior this is not readily apparent from the figures,
but it is & fact that there is less than an exponential decay near to the
interface. Mathematically, this is due to the contribution of the radiation-
induced wave~form to the solution in egqn. (127). Physically, this is caused
by the fact that energy of the vortex sheet disturbance can be transmitted
directly by thermal radiation into the ocuter gas to a depth on the order of
the photon mean free path length.

The effect of the plane of symmetry is readily apparent. It can be seen
that there is a build up of pressure and temperature fluctuations in the inner
gas, & natural result of the reflected waves.

All of the figures exhibit slip in v and T at the interface. The former
is simply due to the x-direction slip speed across the vortex sheet. The
latter is characteristic of radiation problems if we neglect molecular con-
duction. The smount of this temperature slip can vary within the limits of
isentropic and isothermal behavior, depending upon the relative opmcity of the
two gases and the temperature level reflected in the value of K.

Comparing plots for the different temperature levels (X = 0.5, 50.0)
shows a greatly reduced temperature fluctuation relative to the pressure fiuc-
tuation for the higher temperature. This exhibits the approach toward iso-
thermal acoustic behavior as the terms to the right of egn. (76) begin to
dominate.

Comparing plots for the different slip speeds (0§ = 0.5, 2.5) shows that

the velocity fluctuation relative to the pressure fluctuation is less for the
supersonic case. This reflects the effect of compressibility.
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VORTEX SHEET IN PRESENCE OF BASE FLOW HEAT TRANSFER

Base Flow

Problem description. - We shall now extend our two-dimensional jet or
weke problem to one which includes heat transfer in the base flow. We shall
consider the source for the thermal non-equilibrium as volumetric heat gener-
ation within the inner gas. Then, if we fix our coordinates with the inner
gas and claim that the ocuter gas has a much greater speed relative to it, we
can envision one-dimensional heat transfer across the inner gas in the y-
direction to the outer gas which then absorbs the heat and convects it down-
stream. Thus, we may continue our assumption of negligible x-direction vari-
ation in base flow properties.

It remains our only problem in the base flow to determine appropriate
temperature distributions across the inner and outer gases. This requires
solution of the energy eqn. (4) in conjunction with the radiation transfer
ean. (26). As applied to the present problem these are

Scpu—g'—£ = -%f; + 8 (141)
2- =l

R YR o
3y X

vwhere U = 0 for the inner gas in the present coordinate system and § = 0
for the ocuter gas.

Inner gas. - If we neglect the convection term in the inner gas the
energy eqn. (141) becomes

4 . 3 : (143)

If we assume uniform heat generation we note that the radiation transfer
eqn. (142) reduces to

=k
%}'1‘_4 _1%\. a (1hk)

Integration of eqn. (143) now yields

q (145)

h
Ql
+
Q
=
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But, for symmetry, let gq(0) = 0 so that C; = 0. Substitution of egn. (1k5)
into eqn. (144) and integration yields

e %" v + c, (146)

where we have taken A to_be a constant across the inner gas. If we set as
a reference temperature T(0) = T, and substitute f = T/T, and n = ay, eqn.
(146) may be written

fh =1 -An° (147)

where we have defined

s =38 (148)

80a2AT
o

If we choose to let § be uniform at

Q = NofEFpo

from egn. (18) and utilize the definitions of the heat generation and radia-
tion parameters, G and K respectively, as defined below egn. (30) we may get
for eqn. (148)

o= ._6._<-;r2_ (149)
ar) K

thus fixing the relationship between the heat generation and radiation para-
meters in the base Tlow.

OQuter gas. - Since there is convection in the outer gas there is need to
concern ourselves with the x-direction development of the temperature profile
in the base flow in order to select a typical y-direction temperature distri-
bution. If the outer gas is initielly uniform at temperature T, we expect
the greatest rate of change of its tempersture to occur at its common surface
with the inner gas, a sort of radiation boundary layer growth. The magnitude
of temperature slip which may exist at this interface is a function of the
opacities of the two gases, the greater the opacities, the less the slip. If
we assume the inner gas to be guite opaque, its surtace may be considered as
an opaque radiating wall at tempersture T,. In this case, the magnitude of
temperature slip is determined by the opscity of the outer gas, the greater
its opacity, the more rapid the boundary layer growth and the more rapid the
development of a non-uniform temperature profile in the outer gas. Note that
there is uniform heat flux crossing the interface at all x-locations since
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there is uniform internal heat generation. Thus, there is an essential
temperature difference (Tw—Tm) maintained between the inner gas outer surface
and the free stream of the ocuter gas, particularly if the x-direction develop-
nment of outer gas temperature is slow.

The problem pertaining to the outer gas that we have formulated above
has the form of a Rayleigh problem, one which Sparrow and Cess [33] have
treated. They found solutions for the temperature distribution in x and y
for short time by means of a serlies expansion in x and for long time by means
of the radiation slip method. A linearization was made in the solution by
claiming that (T-T,) << (T,~T.), where T is the base temperature at any point
during its development in the outer flow. Thus, the long time solution would
have to abide by this restriction. They have also shown & solution for tem~
perature slip for all time (all x) by using an exponential approximation to
the exponential integrals in the integral form of the radiation transfer
equation. This exponential approximation is effectively what we have done in
arriving at eqn. (26) if the latter is restricted to cne dimension. There is

a small difference, however, since Sparrow and Cess have assumed Ez(t) = e'2t

-V3%

where we have effectively taken Ez(t) = e . Their results will, neverthe-

less, be taken us applicable to our present problem. Defining

201f§:
£ = — (1590)
¢ AU
e p
their solution for the slip temperature T(E,qyl) is
T(any ) - T -
L ¥ o 1 (k) e (151)

T - T
w W

where Io is the modified Bessel function of the first kirnd. The short time
solution yields

T(g,ay,) - T,

v 2
— = 1 - bE+ 1255 4 —mee (152)

In applying the above analysis to our stebility problem a desirable result
would be that only short time need be considered so that we may use 2 uniform
outer gas base temperature. This would require small £ sccording to the above
solution. Putting £ in terms of our usual nomenclature it mey be rewritten in
the form

ax)K (153)
8(ar)U
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Thus, we see that for £ << 1 we are only allowed to consider low temperature,
high speed, small absorptivity or short length for the outer gsas.

One factor that has
the original temperature
concerned with the above
measured either in terms

associated temperature drop through the inner gas.

been left ocut of the above analysis is a measure of
slip. If this is not very large we need not be
criterion for short time. The original slip can be
of the total heat generation of the inner gas or the
The heat transferred from

the interface to the outer gas at T in the opaque wall assumption is

(15%)

yhere_this is the accumulation over the source within the inner gas, that is

q, = le. Therefore, we may express the initial slip as
@®© h @rl
1-(F) = — (155)
W oTw
From eqn. (146) we can get
- 2
3Qy
Tﬁ - T:- - (156)
1
Elimination of § from egns. (155) and (156) yields
SR PV
1-G-) = =) -1] (157)
Tw 3y1 Tw
Thus, as long as
To * 3yl
() << g3 (158)
w 1

the initial temperature slip in the outer gas is small and we need not be
concerned with the short time restriction of our Reyleigh problem.

Inner gas opacity. - We have taken the inner gas to be quite opague for
the benefit of the Rayleigh analysis. It was not necessary to do so in order
to effect a solution for temperature distribution within the inner gas in terms
of Q. However, it is true that a fissioning gas which has the capability of
producing a substantial volumetric heat generation rate does have a high
Pission cross-section. Such a gas also normally has a high radiation absorp-
tivity. Thus, it was not unreasonable for us to think in terms of a fairly
opagque inner gas.

48



If we carry this assumption one step further we may combine egns. (155)
and (156) to yield

= 2
R 0 8
T =T, + 8ot (1 + 3y1) (159)
Using eqn. (148) we may get
1 - (=)
T 1i-K/
A = O = 2 K%A (160)
21+ =2 (ay,)%(1 + ==
(ay, )71 + 3, ayy 37,

assuming equal specific heat ratios and sound speeds of the inner gas at T
and the outer gas at T,. In the case of yl/Al >> 1 the slip may be ignoreg in
A, leaving us with

1-X,/
A = ____J%%;L (161)
{ay,)
Perturbation Problem
Governing equations. - Our perturbation problem must remain compatible

to the base flow that we have described above. Thus, we must account for the
transverse variation of the base flow density and temperature. Upon applying
the Galilean transformation 3/9t = 3/3t + U 3/3x, egns. (30), (11), (12), (16),
(17), (20), (31) and (32) will govern the present problem. Assuming a solution
in x,t for the modified potential function of the form

$ (x,y,8) = a(y)etelxet) (162)

and letting n = ay, these governing equations become

2 2 2

4 _4,__3 4 (. 4%y _ e=U iaG__ ,d ¢ _

[dn2 1 (ax)2][d“ (g g - e+ (570 ¢+ Srom o )]
(163)

iak d2 5 d2¢ 5 4, e-U\2
+ (= -0 =5 -2+ vf (-;70 ¢] = 0
ar(e-U) dn an
p'(n) = 12 (cu)o (16%)

a
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u'(n) = ice (165)

|
g
|

vi(n) = or ¥ (166)

d2®

2

T'(n) _ iof
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To c-U an

- fo + y( el <1>] (167)

' 2
3 (n) = - R A (r 8 gy, (2 ety . agf—g;(“-m (168)
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(169)
ieK .5 d%¢ 5 b, e-U,2
a{ey [T 3 = T+ vf (5) ol
dn
'( ) - a -(ak)z d (f ) £ + ( ) o + iaG _d._z_‘g__ (b)
a'(n) = -=5003y &t - aAZc-US(dnz
(170)
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M?:IEU)JS d2 > - 7% + f ( e, ¢]}
dn

What makes the present problem different from that of the last chapter is
the influence of base flow heat transfer upon the perturbations and the
presence of & heat generation perturbation. Since the former influences the
perturbation problem only through the vase flow properties, in particular the
dimensionless temperature f, and the parameter of the latter is related to f
through eqn. (149), the whole effect is measursble solely in terms of f. Thus,
we are concerned with evaluating the effect upon the vortex sheet stability of
non-uniformity in f. It is apparent from egn. (156) that this non-uniformity
cen only be substantisl if the gas is either quite opaque or has high fission
cross-section. Since, as we have pointed out, these two properties are entire-
ly compatible, we shall subsegquently make the assumption of & falirly opaque
inner gas and use this restriction to advantage in the perturbation enalysis.

Eqn. (156) mekes clear the fact that internal heat generation leads to
non-uniformity in f which will carry a measurable influence upon the perturba-
tion problem. We may show, however, that the direct appearance of a heat
generation term in the perturbation equations has little 1nfluence in the
opague gas. Eqn. (149) shows G to be proportional to A (ar)®K. Estimating A
from egn. (161) and noting that (1 - Ky/K;) < 1 we find that G < Ka/(y1/) )e.
Therefore, it appears that, for moderate values of Ky, the heat generation
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terms meay be dropped from our perturbaticn equations.®* This discovery means
that the base flow temperature profile in the inner gas may be produced by
other than a fissioning gas in experiments used to verify the present
stability theory.

With the above discussed restrictions we may now write the somewhat
simplified equations governing the inner gas as

-2
[(£or) - f£o. + 0] _
1 1 1 (172)
iaA 2
——EL_—& G5 - eyt - 20, + y2'sPe] = 0
3¢ an
pj(n) = 1B g (a72)
ui(n) = lad, (173)
vi(n) = af@i (174)
T!(n) :
1 — laf '] -2 ]
= T lfe]' ~ fe, + yeTe ] {(175)
ol 8 C
dqi ﬂi [ 11 =2 6
oZn) = - =) [(£o;)' - £o, + 2%,] (176)
iey D _
I' (n) = = [£%611 = £%6. - y£'aZe. ] (177)
ol - 1 1 1
(y-1)e
iay pad,) _
al(n) = - 1% 4 [fsé" - 25, - yfhczd? ] (178)
1 - dn 1 1 1
3{y-1)e

# The influence of this term upon the eigenvalue was spot checked at several
points and found to be nesrly indiscernible.
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where we are taking U. = 0 and defining E, the eigenvalue, as in the last

chapter. 1

The equations which govern the ocuter gas are those of egns. (112)-(121).
Requiring the finiteness condition as n >« and utilizing the definitions of
eqns. (122)~(124) will afford the solution of egn. {127) with two unknown
coefficients remaining.

Eigenvalue problem. -~ Requiring symmetry in the inner ges such that
vi(O) = qi(d) = 0 and matching pressure, normal velocity component, integrated
intensity and heat flux at the interface at n = ay, provides us with & problenm
similar in nature to that of the last chapter. The only difference involves
the solution of egn. (171) for the inner gas. This has been accomplished by
a numerical procedure which is described ir the Appendix.

Projected results. - In the formulation of the present problem we have
added a new parameter A associated with the base flow heat transfer. With the
assumption of & fairly opaque inner gas it might at first appear that the
product aijKj in eqn. (171) constitutes only one free parameter but, in the
ebsence of any such restriction upon the outer gas, the parameters aly and Ky
appear separately in the boundary conditions at the interface. Thus, if
the outer gas is radiating with an opacity of unit order, we have the free
parameters vy, ayy, U, alj, als, Kj and K, after letting Yl/ye = ay/a, = 1.

Certain observations may be made prior to actual solution of the present
perturbation problem. We have learned that maximum radistive non-equilibrium
occurs in the perturbations for a given temperature level (reflected in the
value of K) when the opaque and transparent operators in the radiative trans-
fer equation are of the same order. This notion still applies with regard tc
the outer gas for which we have made no opacity restriction. For the inner
gas, however, we have required it to be fairly opaque. Thus, comparable non-
equilibrium must occur at higher X.

The influence of variable base flow temperature can be seen in eqn. (171)
in toth the isentropic and the isothermsl groups of terms {with regard to
perturbations only)}. In a region where f = 1 we have the usual isentropic and
isothermal sound speeds but in regions where f < 1 the sound speeds are effect-
ively reduced, leading to a lesser acoustic impedance in the gas. In the last
chapier we saw where the lesser isothermal sound speed contributed to some
stabilization. If this carries over to the present case, we might expect that
the influence of lesser sound speeds (by comparison to our reference value of
a = J;ﬁ@o) in certain regions of the inner gas will be one of stabilization.

We might point out also thet the product aAlKifS appears as & coefficient
to the highest derivative in egn. (171). When this is small it would appear
t0 make our prcblem singular. Bul, as we have previcusly discussed, the
solution goes over smoothly to that indicative of equilibrium acoustics in this
limit while the thermal boundary conditions vanish in & regular manner.
Pursuance of this limit by a numerical procedure, however, can be troublescme
because of multiplication and division by small numbers in matching boundary
conditions at the interface. In regions where f varies rapidly further numer-
ical difficulty csn be enountered because of the demand for a small integration
step size.
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Results

Eigenvalue behavior. - Figures 17 through 20 display the effect of a
varisble base flow temperature in the inner gas upon the eigenvalue for
selected values of opacity, temperature level and slip speed. It can be
concluded that the base flow heat transfer which accounts for the transverse
temperature distribution considered in eqn. (147) offers some reduction to
the instability of the disturbed vortex sheet,

Several observations may be made with regard to the eigenvalue behavior
as & function of the several parameters which appear in the present problem.
All four figures plot the complex wave speed ¢ as a function of K2/K for
aky = 10 -2, Figures 17 and 19 also consider ai; = 10-3 and 10'h In all
cases, it is necessary to insure the validity of our numerical results in
light of the opaque inner ges assumption. This assumption, if it obreaks down,
will do so adjacent to the interface between the gases, where there exists a
transparent boundary layer. The limiting criterion used is based upon a
calculation of the terms neglected in the analysis and a comparison of them to
the terms retained. Quite arbitrarily, the solid curves of Figures 17 through
20 have been made broken when the negiected terms reach approximately 20
per cent of the retained terms for a location immediately adjacent to the
interface. Combinations of aij and K; were limited to those which would not
yield too low a number for their product so as to avoid the numerical
difficulties previously discussed. It is to be noted that greater instability
occurs for lower aiy. This is as it should be since a lower a}; indicates a
more opaque inner gas which approaches classical equilivbrium behavior.

A higher temperature level (reflected in K;) offers less instability
because of the transition toward isothermal eqguilibrium behavior as we dis-~
cussed in the last chapter. This is true for all K; when K /Kl = 1 but 1t
is not without limit when K2/K1 < 1l. TFigure 19 shows that, when akl lO’
alo = 1 and /X = 10~1 for instance, there is again a de-stabilizatlon as
Ky exceeds about 102

Because the effect of the "nearness" of the plane of symmetry is super-
imposed, as previously discussed, it was considered sufficient to limit ay;
to one value while investigating the influence of the remaining parameters.
It can be seen from the figures that the effect of varying K2/K1 is qualita-
tively similar for the four different slip speeds chosen.

Profile functicns. - Figures 21 and 22 offer a typical comparison of the
profile functions for cases with and without base flow heat transfer. The
equations governing the functions for the inner gas are those of egns. (Al),
(A6) and (AT) of the Appendix. The equations governing the functions for
the outer gas come from =gns. (lhO) where the profile for temperature must be
altered by a factor of (Ké/Ki)“ in order to reference it to the symmetry plane
base temperature of Tol’ The latter profile is then governed by

aT)(n) _ i(Ke/K..I_);G

2 aTo1 a-0

T

(oy - [1 —y(c-0)%]o,) (179)
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In general, the observations made in the last chapter regarding the
profile functions carry over to the present case. The same arguments apply
to slip at the interface and the smaller temperature fluctuations at the
higher base temperature levels. As before, variation of the parameters
associated with thermal radiation carry a primary influence upon the temper-
ature fluctuetions and a secondary influence upon the pressure and velocity
fluctuations.

The maJor difference exists in the influence of the base flow temperature
variation (reflected in Kp/K;). A lower K,/K; leads to a greater temperature
fluctuation relative to pressure {fluctuation dbecause of the function f in the
terms to the right in the governing eqn. (171). A lower Kp/K; also leads to
steeper perturbation profiles adjacent to the interface in the inner gas, that
for temperature being more pronounced than that for velocity.

APPLICATION TO GASECUS NUCLEAR ROCKET

Rocket Paremeters

In this chapter we shall make an approximate application of the above
anglysis to the gaseous nuclear rocket problem which prompted this investiga-
tion. At present, there appears to be no firmly established design, either
in 3 mechanical or a thermal sense, but we shall derive aspproximations tec the
appropriate parameters based upon recent available reports.

Kascak [13] suggests a fuel core of approximately R = 1.6 ft. radius
containing uranium gas with opacities eguivalent to R/Al = 103 or higher,
McLafferty [22] and Kascak suggest power levels which yield approximately
§ = 109 Btu/hr-rt3. Putre [30] and McLafferty suggest that the inlet temper-
aturs of the coolant gas is approximately T.= 5000°R after regeneratively
cocling the nozzle. Based upon this information we can calculate an approxi-
mate centerline temperature Tp. The cylindrical form equivalent to egn. (159)
is

b L 3§§2 8
J.O = Tm + léokl (l + '§'1':{—) (180)

Substitution of the above data yields approximately T _ = 64,000°R. This calls
for approximately Ké/Kl = 3.5 x 10~°.

Parks, Lane, Stewart and Peyton [27] give specific heat values for
gaseous vranium such that y = 1.4 spproximately. Putre considers fuel to
propellant density ratios ranging from 1.0 to 4.7. An intermediste value
wonld yield a sound speed in the fuel lower than in the propellant. As a
compronise and to satisfy our assumption of al/a2 = 1 in our perturbeticn
enalysis, we shall tske a = 5000 fps. Assuming an operating pressure of
100 atm. will yield s radiation parameter for the propellant at inlet of
approximetely K2 = 1073.
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Kascak has suggested opacities equivalent to R/AQ = 5 or higher for the
propellant. Putre has suggested a slip speed on the order of 100 fps. We
shall arbitrarily take for our purpose 125 fps and have as a conseguence
U = 0.025.

Rayleigh Analysis

The heat transfer per unit area to the surface of a cylindrical gas core
generating heat uniformly is q,, = QR/2. Substituting this into egn. (154) will
yield an estimate of the initisl temperature slip from the opaque surface of
the inner gas to the coolant gas as

T 3
= = +-Ep = .3
w 20T

Using yl/A2 = 5 and oy, = 0.7 vwe find from eqn. (153)

.001
& = Fra(.oo5y (ox) = -0357(ax)

which indicates that we can consider the occurrence of a few wavelengths
in the downstream direction before appreciable radiation boundary layer devel-
opment in the outer gas.

A few remarks about this result are in order. Conceptual designs of the
rocket indicate relatively small chamber length to diameter ratios. Kascak
has suggested a length of 6.0 ft. which yields a length to core diameter ratio
of 3.75. This means that, if ay; = 0.7, only 2.62 wavelengths exist in the
chamber. It is the whole objective of the rocket to gain substantial enthalpy
in the propellant as it traverses the chamber length. Then it would be
desirable to consider higher coolant gas opacity or slower speed, both of
which would yield a more substantial radiation boundery layer development over
a shorter chamber length for a given ay;. On the other hand, shorter wave-
lengths may be of concern, such as those more indicative of turbulence. In
that case, the chamber would contain many more wavelengths and it would thus
take many more wavelengths for development of the radiation boundary layer.
Then, it is permissable to consider a uniform outer gas temperature for our
perturbation analysis.

We have already observed in prior work that subsonic disturbances to
the vortex sheet, existing for subsonic slip speeds, will tend not to be
influenced by a real or virtual boundary existing more than a few wavelengths
away. We shall see evidence of this fact upon reviewing the results of the
perturbation problem analysis of the next section.
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Perturbation Problem Results

Figure 23 displays the behavior of the complex wave speed c as a
function of wave number for fixed values of vy, U, yllll, yl/kg, K2 and Ké/Ki
as listed on the figure, considering a confined inner gas and a semi-infinite
outer gas. The value of Ko/Ki selected for the perturbation analysis was
10-3 which corresponds to an approximate centerline temperature of To =
28,000°R. This was done in an attempt to avoid the necessity of using an
excessively small step size in the numerical integration in the inner gas
near the interface. The consequences of this substitution will be discussed
later in this section.

For smaller wave numbers, the virtual boundary of the symmetry plane in
the inner gas obviously has some effect upon the eigenvalue. As we would
expect, there is a build up of pressure and temperature disturbsnces in the
inner gas with particularly steep profiles adjacent to the interface because
of the influence of the funection f in the governing equations. In the outer
gas there is decay of the disturbances to a vanishing magnitude as they
propagate outward from the vortex sheet. A question remains, however, as to
the direction of propagation to determine the number of wavelengths in the
downstream direction before substantial decay takes place. This point is
important to the question of radiation boundary layer growth. From egns. (88)
and (127) the solution in the semi-infinite outer gas takes the form

o = (ne™® 4 Be-bay)eia(x - ct)

For the parameters selected and a choice of ayl = 0,7, the numerics yield
a = 10,3 + 2.5i b =1.0 + 0.0001ki

where a is associated with the modified classical wave and b is associated with
the radiation~-induced wave. Then, the angle of propagation of these is

(dy/dx)a = l/a.i = 0.4 (dy/dx)b = 1/1>i = T000

while the associated damping in the y-direction is

e—10.3ay —ay

|¢| - l¢|b ~ e

a

Thus, the damping is quite substantial in the x-direction.
Realistically, we realize that the outer gas in the rocket is not

unconfined. In fact, it is expected that the dimension of the outer gas would
be of the same order as that of the inner gas. Then, the question remains as
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to the influence of an outer boundary. Figure 23 displays the behavior of

our eigenvalue upon plecing a wall, where v) and g vanish, at a distance

from the interface equal to the half-width of the core gas. This alters the
form of the solution in the outer gas to one similar to that of the inner gas
but with uniform base temperature. For the longer wavelengths this has a
slightly de-stabilizing influence rather than stabilizing as with one boundary.
This is due to the fact that disturbances generated at the vortex sheet and
propagated outward in both directions tend to cancel each other after being
reflected back to the interface, thus destroying the stabilizing influence

of a single boundary. This is more clearly seen from the plots on this figure
of the eigenvalue behsvior of purely isentropic gases with like properties.

Comparison of the isentropic cases to the rsdiating cases shows that the
latter are less unstable, exhibiting the fact that radiative transfer between
the gases does have a stabilizing influence.

Figure 23 shows that, as we move to shorter wavelengths, the eigenvalue
approaches a fixed asymptotic value, independent of the wave number. This
means, of course, that the boundaries no longer influence the vortex sheet
instability, the eigenfunctions decaying to very small magnitudes before
encountering the boundaries.

A check was made of the transparent terms neglected in our opaque inner
gas perturbation analysis. For our perticular choice of K2/K it was found
that the neglected terms were on the same order of magnitude as the retained
terms immediately adjacent to the interface. A value of Ké/Ki = 3.5 x 10-5
would have exceeded applicability of ocur assumption and we woilild be forced to
consider the effect of the transparent boundary layer edjacent to the inter-
face. Then, of course, it would not be permissible to consider the outer gas
as receiving radiation purely from an opaque inner gas wall.

As we have mentioned before, it was not necessary to assume that we were
dealing with an opague gas in order to drop the first term of the radiative
transfer eqn. (26) in the base flow. The loss of this term was purely a
consequence of the fact that the source term § was taken as uniform ascross the
gas.* The result is thst the Planck function oT"/w is parabolically
distributed. It would likewise be true that the first term of egqn. (26) could
be dropped in the opaque assumption, regardless of the distribution of the
source function, so that the radiative transfer becomes a diffusion process.
Given a high magnitude of source function, however, the temperature distri-
bution becomes particularly steep and the short photon path diffusion process
no longer applies. Kascak based his heat transfer analysis for the base flow
in the inner gas upon the diffusion approximation, arguing that the gas is
quite opaque. His analysis would appear to be in error, however, because he
considers non-uniform source distributions and power levels which give rise
to such a steeply varying Planck function distribution that he exceeds the

* The uniform source problem was considered by Heaslet and Warming [12].
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diffusion approximation. To be correct, then, he should consider the effect
of keeping the first term of eaqn. (26).

Our choice cf a higher K2/Ki corresponds to a lower @ so that the Planck
function distribution is not so steep as to exceed the diffusion approximation,
the latter being of importance in our perturbation analysis even though § may
be uniform. A lower K2/Kl would offer a more steeply varying function f which
would lead to an increased stabilization effect. However, because the trans-
perent boundary layer adjacent to the interface would then have to be included
in our perturbation analysis, this increased stabilization effect would not be
expected to be very appreciable,

Related Experiments

Two experiments which appear to be somewhat related to the present work
are reported by Ragsdale and Lanzo [31]. One of these was carried out to
determine the effect of inlet velocity profiles and turbulence levels upon the
mixing of coaxial streams of air, at normal temperatures, in & rocket-like
chamber such as that sketched in Figure 1. The inner stream, colored with
iodine, is injected at low speed parallel to the high speed outer stream. 1In
one case, visual observation showed that a large scale mixing effect took
place with a downstream recirculation of the propellant into the core region.
A foemy, porous material, was then introduced across the inlet to break up the
large scale turbulence and provide a more uniform, laminar-like flow at inlet.
In this case the recirculation no longer existed and the mixing seemed to be
confined to a relatively thin layer between the streams.

The second experiment involved the coaxial flow of argon (slow moving
inner gas) and air (faster moving outer gas) where the argon was inductively
heated in a plasmsa state by coupling to a high frequency alternating current
field, the latter created by passing & current through a copper coil embedded
in the outer wall. No care was taken to provide a laminar-like inlet so that
large scale turbulence was probably introduced. Argon concentration profiles
were measured across the cylindrical cavity before and after the argon was
heated. Extremely high concentrations of air were in evidence in the central
portion for the cold flow but mixing was retarded when the argon was heated.
This implies that the heated inner gas (with a presumed thermal radiation to
the outer gas) suppresses the turbulence and reduces the mixing.

If the leminar-like inlet of the first experiment had been provided for
the second experiment, turbulence would have to be confined to that generated
at the gas interface and a better analogy to the present work could be drawn.
It is expected, however, that the vortex sheet will be unstable and turbulence
will be generated but, in view of the experimental results, it will be
diminished to an extent in the presence of thermal radiation. This implies
that the amplification of the disturbance is reduced, an effect which the
present linear perturbation theory predicts.
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CONCLUSION

It is known that thermal radiation is s thermodynamic non-equilibrium
process that acts to damp acoustic disturbances as they propagete in a gas.
It is shown in the present work that standing, undamped one-dimensional waves
can propagate back and forth between fixed boundaries when the gas is either
completely cold or infinitely hot, in the former case traveling at the
isentropic speed of sound and in the latter case traveling at the isothermal
speed of sound. Maximum damping is incurred when the gas is in a state of
maximum non-equilibrium, which occurs at an intermediate temperature depending
upon the opacity of the gas., Density dependent heat generation introduced
into the perturbations of the gas has an amplification effect upon the
standing waves.

Previcus investigators have shown the plane vortex sheet sevarating semi-
infinite isentropic gases to be unstable to small disturbances except when the
slip speed across the sheet exceeds a certain supersonic value. For egual
specific heat ratios and sound speeds in the gases the sheet beccmes neutrally
stable for slip speeds in excess of 2/2 times the isentropic speed of sound.
The present study shows that this criterion alsoc applies to the isothermal
equilibrium state if the isentropic sound speed is replaced by the isothermal
sound speed. In addition, it is shown that the amplification factor is some-
what less at the isothermel limit for a given unstable slip speed, the effect
being smaller for smaller speeds. Uniformly increasing the temperature level
from the isentropic limit to the isothermal limit in the gases gives rise to
a monotonic decrease ir amplification factor for all subsonic disturbances
while, for supersonic disturbances, the amplification factor increases and
then decreases. Thus, thermal radiation in the perturbations has a de~stabil-
izing influence upon otherwise neutrally stable disturbances.

Prior work has shown that the introduction of a virtual boundary near
the vortex sheet in isentropic flow stabilizes it for slip speeds less than
2/2 times the sound speed but de-stabilizes it for slip speeds greater than
2V2 times the sound speed. The present work demonstrates that these observa-
tions carry over to the isothermal limit. In the transitional non-equilibrium
region the presence of the boundary appears to give rise to more of a monotonic
decrease in the asmplification factor with lesser variation between the
isentropic and isothermal limits.

Introducing uniform heat generation into & confined inner gas gives rise
to a parabolic distribution of temperature to the fourth power in the gas,
implying a transfer of heat from the inner gas, across the vortex sheet to
the outer gas in the base flow. The present investigation indicates that this
variation in base temperature is somewhat stabilizing (lesser amplification
factor) to small disturbances of the vortex sheet at all slip speeds. There-
fore, it appeers that radiative non-equilibrium in the base flow has a stabil-
izing influence. Introducing heat generation in the perturbations in the inner
gas in proportion to perturbed density, consistent with the base flow heat
generation which gives rise tc the base temperature variation, appears to have
no discernible effect upon the stability question.
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An approximate application of the present analysis was made to a coaxial
flow gaseous nuclear rocket. The result exhibited that the vortex sheet
between the slow moving core gas and the faster moving propellant gas is
unstable to small disturbances but with a lesser amplification factor than

that which befits isentropic gases.

60



BIBLIOGRAPHY

1. Baldwin, B.S., "The Propagation of Plane Acoustic Waves in a
Radiating Gas," NASA TR R-138, 1962.

2. Betchov, R. and W.0. Criminale, Jr., Stability of Parallel Flows,
Academic Press, Int. Series of Monographs 10, 1967, p. 37.

3. Cheng, P., "Dynamics of a Radiating CGas with Application to Flow
Over a Wavy Wall," ATAA L, 1965, p. 238.

' Cogley, A.C., "An Approximate Method for Analyzing Non-equilibrium
Acoustic Phenomena with Application to Discrete Radiation-Driven
Waves," Stanford Univ. Dept. of Aero. and Astro. SUDAAR 338, 1968.

5. Conte, S.D., Elementary Numerical Analysis, MeGraw-Hill, 1965, p. 223.

6. Fejer, J.A, and J.W. Miles, "On the Stability of a Plane Vortex Sheet
with Respect to Three-Dimensional Disturbances," JFM 15, 1963, p. 335.

T. Gill, A.E., "Instabilities of 'Top-Hat' Jets and Wakes in Compressible
Fluids," Phys. of Fluids 8, 1965, p. 1428,

8. Gillis, S.E., A.C. Cogley and W.G. Vincenti, "A Substitute-Kernel
Approximation for Radiative Transfer in a Nongrey Gas Near Equilibrium,
With Application to Radiative Acoustics,” Int. J. Heat-Mass Trans. 12,
1969, p. Lus.

9. Glasstone, S. and M.C. Edlund, The Elements of Nuclear Reactor Theory,
Van Nostrand, 1952, p. T1.

10. Hatanaka, H., "On the Stability of a Surface of Discontinuity in a
Compressible Fluid," Jour. Soc. Sci. Culture, Japan, Vol. 2, 1947, p. 3.

11. Heaslet, M.A. and B.S. Baldwin, "Predictions of the Structure of
Radistion-Resisted Shock Waves," Phys. of Fluids 6, 1963, p. T81.

12. Heaslet, M.A. and R.F. Warming, "Radiative Transport and Wall Temperature
Slip in an Absorbing Planar Medium," Int. J. Heat-Mass Trans. 8, 1965,
p. 979.

13. Kascak, A.F., "Estimates of Local and Average Fuel Temperatures in a
Gaseous Nuclear Rocket Engine,"” NASA TN D-L416k, 1967.

i4k. Lamb, H., Hydrodynamics, 6th Ed., Dover, 1945, #232.

15. Landeu, L., "Stability of Tangential Discontinuities in Compressible
Fluid," Akademiia Nauk S.S.S.R. (Comptes rendus Doklady), Vol. Ll
No. 4, 194k, p. 139.

6l



16.

iT.

18.

19.

20.

21.

22.

23.

2k,

25.

26.

27.

28.

29.

30.

31.

32.

Lees, L. and C.C. Lin, "Investigation of the Stability of the Laminar
Boundary Layer in a Compressible Fluid," NACA TN 1115, 19h46.

Lessen, M., J.A. Fox and H.M. Zien, "The Instability of Inviscid Jets
and Wakes in Compressible Fluid," JFM 21, 1965, p. 129.

Lick, W.J., "The Propagation of Small Disturbances in a Radiating Gas,"
JFM 18, 196k, p. 27L.

Liepmann, H.W. and H.E. Pucke?t, Introduction to Aerodynamics of a
Compressible Fluid, Wiley, 1947T.

Lin, C.C., The Theory of Hydrodynamic Stability, Cambridge Univ.
Press, 1955.

Iong, H.R. and W.G. Vincenti, "Radiation-Driven Acoustic Waves in a
Confined Gas," Phys. of Fiuids 10, 1967, p. 1365.

Mclafferty, G.H., "Investigation of Gaseous Nuclear Rocket Technology -
Summary Technical Report," United Aircraft Research Lab H-910093-46,1969.

Miles, J.W., "On the Disturbed Motion of a Plane Vortex Sheet,"
JFM L4, 1958, p. 538.

Moore, F.K., "Effect of Radiative Transfer on a Sound Wave Traveling
in a Gas having y Near One," Phys. of Fluids 9, 1966, p. T70.

Pai, S.I., "On the Stability of a Vortex Sheet in an Inviscid
Compressible Fluid," J. Aero. Sei. 21, 1954, p. 325.

Pai, S.I., "On the Stability of Two-Dimensional Laminar Jet Flow of Gas,"
J. Aerc. Sei. 18, 1951, p. T31l.

Parks, D.E., G. Lane, J.C. Stewart and S. Peyton, "Optical Constants of
Uranium Plasma,” NASA CR-72348, 1968.

Pesrson, W.E., "On the Direct Solution of the Guverning Equations for
Radiation-Resisted Shock Waves,'" NASA TN D-2128, 196k.

Podney, W.N. and H.P. Smith, "Prompt-Neutron Kinetics of a Spherical-
Cavity Reactor," Nuc. Sci. Engr. 29, 1967, p. 373.

Putre, H.A., "Estimates of Fuel Containment in a Ccaxial Flow Gas-Core
Nuclear Rocket," NASA TM X-52838, 1970.

Ragsdale, R.G. and C.D. Lenzo, "Summary of Recent Gaseous Reactor
Fluid Mechanics Experiments," NASA TM X-18L7, 1969.

Raizer, Tu. P., "On the Structure of the Front of Strong Shock Waves in
Gases," Sov. Phys. JETP 5, 1957, p. 12L2.

62



33‘

3k,

35.

36.

37.

38.

39.

ko.

b1,

h2.

Sparrow, E.M. and R.D. Cess, Radiation Heat Transfer, Brooks/Cole, 1966,
p. 276.

Tollmein, W., "Uber die Entstehung der Turbulenz,"” Nachr. Ges, Wiss.
Gottingen, Math.-Phys. Klasse, 1929, p. 21.

Van Dyke, M., Perturbation Methods in ¥luid Mechanics, Academic Press,
1964, p. 78.

Vincenti, W.G. and B.S. Baldwin, "Effect of Thermal Radiation in the
Propagation of Plane Acoustic Waves,”" JFM 12, 1962, p. 4h49.

Vincenti, W.G. and C.H. Kruger, Introduction to Physical Gas Dynanmics,
Wiley, 1965, p. 492, 508.

Wang, K.C., "Instability of a Vortex Sheet in Non~equilibrium Flows,"
Phys. of Fluids 5, 1962, p. 1368.

Wang, K.C. and S.H. Maslen, "Hydrodynamic Stability of a Vortex Sheet
in Compressible Fluids," Phys. of Fluids 7, 1964, p. 1780.

Whitham, G.B., "Some Comments on Wave Propagation and Shock Wave
Structure with Application to Magnetohydrodynamics," Communications on
Pure and Applied Mathematics XTI, 1959.

Wilkinson, J.H., Rounding Errors in Algebraic Processes, Prentice~Hall,
1963.

Zel'dovich, Ia. B., "Shock Waves of Large Amplitude in Air," Sov. Phys.
JETP 5, 1957, p. 919.

63



APPENDIX

The solution of eqn. (1T71l) for a radiating gas with non-uniform base
temperature can be accomplished by numerical integration. This integration
becomes part of an overall numerical iteration procedure for the proper
value of the complex wave speed.

If we define

hl(n) =f h2(n) = hy
\ (A1)
h3(n) =h, -ye £ h(n) = h}
go(n) = hy gl(n) = 2h,
3ic
g {n)=h!-h -h, +-—— ¢
2 2 1 3 aAlKl o)
- A2
- 3ic '
g3(n) = 2h) - ax K f
3ic -2
g (n) =h' =h, + " (f -c)
4 N 3 aAlKi

and let p, q9 and r be the first, second and third derivatives, respectively,
of the function ¢;, we may replace eqn. (171) with four first order ordinary
differential equations in the form

¢ =0 p' =4q Q' =r
(A3)
-2
g

r' = (811‘ + g2q. - 83p - gh¢l)

o)

vhere ( )' denotes differentiation with respect to n. The n-direction mode
functions from eqns. (172)-(178) may be written as

p;(n) = B-EE ¢ o (AL)
ui(n) = ia@l (a5)
vi(n) = afp (46)
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1af

: = [fq-(f-Yc)¢] (A7)
ol ac
dq! -
() = - BB [rq 4 £'p - (£ - &) L (48)
iaypK)
I,(n) = ) (hja h3¢l) (A9)
iayp(oA, )
qi(n) = - 1’5 (h,r + hyg p - hyo,) (A10)
3(y-1)e

Eqns. (A3) may be forward integrated by a Runge-Kutta method (see, for
instance, Conte [5]) if we have starting values for ¢;(0), p(0), g(0) and r(0).
The boundary conditions of vanishing normal velocity component and heat flux
due to symmetry at n= 0 1ead to the conditions p(0) = r(0) = 0 from eans.
(A1), (A6) and (A10) where (£4)'(0) = (£5)'(0) = O from eqn. (14T). We must
yet provide starting values for ¢;(0) and q(0). We may accomplish this by
performing our integration twice, arbitrarily setting ¢;(0) = 0 and q(0) # O
in one problem, then reversing these assignments in the second problem, and
finally providing the solution as a linear combination of the two. This is
permissable, of course, only by virtue of the fact that our perturbation
equations are linear.

Thus, the starting values for problem a may be taken as
0 (0) =1 p, (0) = q_(0) = r_(0) = 0 (a11)

with the Runge-Kutta integration being performed upon egns. (A3). The result
will be numerical values of ®g(ayy), pylayy), 9g(ayy) and rg(ay;). The start-
ing values of problem b may be assigned as

qb(O) =1 ¢, (0) = P, (0) = r (0) =0 (a12)
allowing numerical results for ¢b(ayl), Pb(ayl), qb(ayl) and rb(ayl).
In an eigenvalue problem we have the freedom to arbitrarily set one of the

solution integration constants, considering that the eigenvalue ¢ is an unknown.
Thus, our linear combination may take the form
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L=d
"

¢a + C@b

p =p, +Cpy
(a13)

o]
]

qa * Cqb
r = ra + Crb

In the case of a radiating outer gas the solution to the perturbation
potential function is given in eqn. (127) where finiteness at n + = has been
applied, leaving two unknown coefficients. The boundary conditions applied
at the interface hetween the gases are taken as the usual matching of
pressure, normal velocity component, integrated intensity and heat flux.
Utilizing egns. (87), (94%), (113), (115), (118), (119), (Ak), (A6), (A9) and
(A10), these may be written for the present case as

¢, (ay,) = E—E—g-¢2(ayl) (ALk)

f(ayl) p(ayl) = —

o) (ay,) (A15)
= _ g5 2 oy,

hl(ayl) q(ayl) - h3(ayl) ¢l(ay1)

i(ar))e (a16)
= - -——EI——'[m¢g(ayl) - néz(ayl)]
hl(ayl)r(ayl) + hy(ay, Ja(ay,) - h3(ayl)p(ayl) - hy (ay,) ¢, (ay;)
i(aA )25 (AlT)

2

= - —TEKZTE;'[m¢é"(ayl) - n¢é(ayl)]

Substitution from eqns. (127) and (Al3) into eqns. (A1l4)-(A1T7) will result
in four equations in the four unknowns B2, D2, C and the eigenvalue c.

The interation procedure starts by making two guesses of the eigenvalue c
for a given set of parameters vy, ay;, U, al;, adp, K; and Ky. For each guess
the Runge-Kutta numerical integration through the inner gas is performed,
utilizing eqns. (Al)-(A3), (All) and (A12), to arrive at ¢4, and &y, and their
derivatives at n = ay;. Then, the two complex exponential solutions of eqn.
(127) and their derivatives at n = ay; are calculated while using eqns. (120)-
(124). Upon substituting into the three eqns. (A14)-(A16) we may eliminate
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Bp, D, and C, Egn. (A17) may then be used for linear extrapolation to a new
estimate of c¢c. The process is repeated until eqn. (Al7T) is satisfied within
an established convergence criterion, whereupon the last estimate of the
eigenvalue is considered the correct value.

Once the correct value of the complex wave speed ¢ is found by the above
procedure, the Runge-Kutta integration process may be repeated with the
starting values .

¢l(o) =1 p(0) =0 q(0) = ¢ r(0) =0 (A18)

in order to provide the profile functions for the inner gas. The profile
functions for the outer gas can be calculated by substitution into eqn. (127)

for ¢2 and its derivatives.
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Figure 13. Disturbance profiles for radiating gases separated by disturbed 2-D vortex sheet
near symmetry plane for y; = vy, = 1.4, a; = a,, 0y; = 0.5, aAl = akz = 1.0, U= 0.5
and K = 0.5.
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Figure 14, Disturbance profiles for radiating gases separated by disturbed 2-D vortex sheet
near symmetry plane for Y, = Y2 = 1.4, a; = a,, ay, = 0.5, aA; = ar, = 1.0, T =0.5
and K = 50.0.
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Figure 15.

Disturbance profiles for radiating gases separated by disturbed 2-D vortex sheet
near symmetry plane for Y, = Y2 < 1.4, a; = a,, ay; = 0.5, aAl =al, = 1.0, U= 2.5
and K = 0.5,
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Figure 16.

Disturbance profiles for radiating gases separated by disturbed 2-D vortex sheet
near symmetry plane for y; = vy, = 1.4, a; = ay, oy, = 0.5, ar; = uA =1.0,T=
and K = 50.0.
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Figure 17. Complex eigenvalue for disturbed 2-D vortex sheet near symmetry plane in radiating gases

with base flow heat transfer for Y, =Yy = 1.4, a

W = a,, oy, = 0.5, 00‘2 = 1.0 and
U = 0.5.
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with base flow heat transfer for Yy = Yo = 1.4, a, = a,, oy, = 0.5, cx)\l = (0.01,

o), = 1.0 and U = L.5. 1
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Complex eigenvalue for disturbed 2-D vortex sheet near symmetry plane in radiating
gases with base flow heat transfer for y; = y, = 1.4, a, = a5, ay; = 0.5, aA, = 1.0

and T = 2.5. !
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Figure 20. Complex eigenvalue for disturbed 2~D vortex sheet near symmetry plane in radiating
gases with base flow heat transfer for Y, = Y2 = 1.4, a; = a,, ay; = 0.5, ax; = 0.01,
aAz = 1.0 and U = 3.0.
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Figure 21. Disturbance profiles for radiating gases separated by disturbed 2-D vortex sheet near
symmetry plane with base flow heat transfer for vy, = v, = 1.4, a) = a,, ay, = 0.5,
ar, = 0.01, ar, = 1.0, U = 0.5, K; = 0.5 and K2/K1 = 1.0.
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